In mathematics, the Hermite transform is an integral transform named after the mathematician Charles Hermite that uses Hermite polynomials as kernels of the transform.

The Hermite transform of a function is

The inverse Hermite transform is given by

Some Hermite transform pairs

edit
   
   [1]
   
   
   
   
   
   [2]
   [3]
   
   
   
   
   
   [4]
   
   [5][6]
   

References

edit
  1. ^ McCully, Joseph Courtney; Churchill, Ruel Vance (1953), Hermite and Laguerre integral transforms : preliminary report
  2. ^ Feldheim, Ervin (1938). "Quelques nouvelles relations pour les polynomes d'Hermite". Journal of the London Mathematical Society (in French). s1-13: 22–29. doi:10.1112/jlms/s1-13.1.22.
  3. ^ Bailey, W. N. (1939). "On Hermite polynomials and associated Legendre functions". Journal of the London Mathematical Society. s1-14 (4): 281–286. doi:10.1112/jlms/s1-14.4.281.
  4. ^ Glaeske, Hans-Jürgen (1983). "On a convolution structure of a generalized Hermite transformation" (PDF). Serdica Bulgariacae Mathematicae Publicationes. 9 (2): 223–229.
  5. ^ Erdélyi et al. 1955, p. 194, 10.13 (22).
  6. ^ Mehler, F. G. (1866), "Ueber die Entwicklung einer Function von beliebig vielen Variabeln nach Laplaceschen Functionen höherer Ordnung" [On the development of a function of arbitrarily many variables according to higher-order Laplace functions], Journal für die Reine und Angewandte Mathematik (in German) (66): 161–176, ISSN 0075-4102, ERAM 066.1720cj. See p. 174, eq. (18) and p. 173, eq. (13).

Sources

edit