I – Shih Liu (1943) is a Taiwanese civil engineer. He teaches at the Institute of Mathematics of Federal University of Rio de Janeiro.
I-Shih Liu | |
---|---|
Born | 1943 (age 80–81) Taiwan |
Nationality | Taiwanese |
Education | National Taiwan University |
Alma mater | The Johns Hopkins University |
Known for |
|
Children | 1 |
Scientific career | |
Fields | |
Institutions | Federal University of Rio de Janeiro |
Thesis | On Irreversible Thermodynamics (1972) |
Doctoral advisor | Ingo Müller |
Education
editI – Shih Liu studied at the National Taiwan University and graduated with a diploma in 1972. He continued his studies at the Johns Hopkins University (JHU) where he received his doctorate in applied mechanics in 1972 under the supervision of Ingo Müller.[1]
Academic life
editHe became assistant professor at the National Taiwan University in 1965, teaching and research assistant at the Johns Hopkins University in 1967, post-doctoral fellow in 1972 and professor at Federal University of Rio de Janeiro (UFRJ) in 1972. He became visiting professor at Carnegie Mellon University in 1976–1977, at University of Bologna in 1982, 1986, at University of Berlin in 1990-1991 and Nagoya Institute of Technology in 2004. He also became visiting professor at Texas A&M University in 2006–2007, at College of Earth Sciences National Central University in 2012 and director pro-tempore at UFRJ in 2000–2002. Since 1972, he has more than 50 mathematical research articles published in peer-reviewed international journals.[2][3][4][5] He is married with one son.
Research areas
editHis work deals with continuum mechanics, thermodynamics, relativistic mechanics, rigid body mechanics, elastodynamics, mechanics of deformable bodies, constitutive theories,[6] entropy principle,[7][8][9] Lagrange multipliers.[10]
Writings
edit- Introduction to Continuum Mechanics, Springer-Verlag, 2002
- with Jose Merodio e Giuseppe Saccomandi: Constitutive Theories: Basic Principles Chapter 6 in Continuum Mechanics, in Encyclopedia of Life Support Systems (EOLSS) Developed under the auspices of the UNESCO Publications, 2009
- A Continuum Mechanics Primer Lecture Note - On Constitutive Theories of Materials, 2010
- Introduction to Continuum Mechanics Lecture Note, 2018
- Elementary Tensor Analysis Lecture Note, 2018
Selected publications
edit- Liu, I.-S. (1972): Method of Lagrange Multipliers for Exploitation of the Entropy Principle | Arch. Rat. Mech. Anal. (ARMA); vol. 46, no. 2, pp. 131–148. Doi:10.1007/BF00250688
- Liu, I.-S. (1973): (a) A Non-Simple Heat-Conducting Fluid | Arch. Rat. Mech. Anal. (ARMA); vol. 50, no. 1, pp. 26–33. Doi:10.1007/BF00251292
- Liu, I.-S. (1973): (b) On the Entropy Supply in a Classical and a Relativistic Fluid | Arch. Rat. Mech. Anal. (ARMA); vol. 50, no. 2, pp. 111–117. Doi:10.1007/BF00249878
- Liu, I.-S. (1982): On Representations of Anisotropic Invariants | Int. J. Eng. Sci. (IJES); vol. 20, no. 10, pp. 1099–1109. Doi:10.1016/0020-7225(82)90092-1
- Liu, I.-S. (1996): On Entropy Flux-Heat Flux Relation in Thermodynamics with Lagrange Multipliers | Cont. Mech. Thermodyn. (CMT); vol. 8, pp. 247–256. Doi:10.1007/s001610050042
- Liu, I.-S. (2001): Constitutive Equations of Extended Thermodynamics from a Hybrid Pair of Generator Functions | Cont. Mech. Thermodyn. (CMT); vol. 13, no. 1, pp. 25–39. Doi:10.1007/s001610100040
- Liu, I.-S. (2003): On the Transformation Property of the Deformation Gradient under a Change of Frame | J. Elast. (JELAS); vol. 71, no. 1, pp. 73–80. Doi:10.1023/B:ELAS.0000005548.36767.e7
- Liu, I.-S. (2005): Further Remarks on Euclidean Objectivity and the Principle of Material Frame-Indifference | Cont. Mech. Thermodyn. (CMT); vol. 17, no. 2, pp. 125–133. Doi:10.1007/s00161-004-0191-3
- Liu, I.-S. (2008): Entropy Flux Relation for Viscoelastic Bodies | J. Elast. (JELAS); vol. 90, no. 3, pp. 259–270. doi:10.1007/s10659-007-9142-0
- Liu, I.-S. (2009): (a) Constitutive Theory of Anisotropic Rigid Heat Conductors | J. Math. Phys. (JMP); vol. 50, no. 8, pp. 083506. Doi:10.1063/1.3190487
- Liu, I.-S. (2009): (b) On Entropy Flux of Transversely-Isotropic Elastic Bodies | J. Elast. (JELAS); vol. 96, no. 2, pp. 97–104. Doi:10.1007/s10659-009-9200-x
- Liu, I.-S. (2011): Successive Linear Approximation for Boundary Value Problems of Nonlinear Elasticity in Relative-Descriptional Formulation | Int. J. Eng. Sci. (IJES); vol. 49, no. 7, pp. 635–645. Doi:10.1016/j.ijengsci.2011.02.006
- Liu, I.-S. (2012): A Note on the Mooney–Rivlin Material Model | Continuum Mech. Thermodyn.; vol. 24, no. 4, pp. 583–590. Doi:10.1007/s00161-011-0197-6
- Liu, I.-S. (2014): A Solid-Fluid Mixture Theory of Porous Media | Int. J. Eng. Sci. (IJES); vol. 84, pp. 133–146.Doi:10.1016/j.ijengsci.2014.07.002
External links
edit- Home page at DMM
References
edit- ^ "Ingo Müller - The Mathematics Genealogy Project".
- ^ "I-Shih Liu Google Scholar Profile".
- ^ "I-Shih Liu Research Gate profile".
- ^ "I-Shih Liu MathSciNet profile".
- ^ "I-Shih Liue escavandor profile".
- ^ Muschik, W. (2012). "Comment on: I-Shih Liu: Constitutive theory of anisotropic rigid heat conductors". Continuum Mechanics and Thermodynamics. 24 (2): 175–180. arXiv:1106.3065. Bibcode:2012CMT....24..175M. doi:10.1007/s00161-011-0224-7. S2CID 253677619.
- ^ Hauser, R.; Kirchner, N. (2002). "A historical note on the entropy principle of Müller and Liu". Continuum Mechanics and Thermodynamics. 14 (2): 223–226. Bibcode:2002CMT....14..223H. doi:10.1007/s001610100063. S2CID 119515097.
- ^ Wolff, M.; Böhm, M.; Altenbach, H. (2018). "Application of the Müller–Liu entropy principle to gradient-damage models in the thermo-elastic case". International Journal of Damage Mechanics. 27 (3): 387–408. doi:10.1177/1056789516679495. S2CID 138987871.
- ^ Cimmelli, V.A.; Oliveri, F.; Triani, V. (2011). "Exploitation of the entropy principle: Proof of Liu theorem if the gradients of the governing equations are considered as constraints". Journal of Mathematical Physics. 52 (2): 023511. Bibcode:2011JMP....52b3511C. doi:10.1063/1.3549119.
- ^ Bazanski, S.; Zorski (1992). Foundations of Mechanics. Warsaw, Poland: H. pp. 537–551. ISBN 978-0444987006.