The Inception Score (IS) is an algorithm used to assess the quality of images created by a generative image model such as a generative adversarial network (GAN).[1] The score is calculated based on the output of a separate, pretrained Inception v3 image classification model applied to a sample of (typically around 30,000) images generated by the generative model. The Inception Score is maximized when the following conditions are true:

  1. The entropy of the distribution of labels predicted by the Inceptionv3 model for the generated images is minimized. In other words, the classification model confidently predicts a single label for each image. Intuitively, this corresponds to the desideratum of generated images being "sharp" or "distinct".
  2. The predictions of the classification model are evenly distributed across all possible labels. This corresponds to the desideratum that the output of the generative model is "diverse".[2]

It has been somewhat superseded by the related Fréchet inception distance.[3] While the Inception Score only evaluates the distribution of generated images, the FID compares the distribution of generated images with the distribution of a set of real images ("ground truth").

Definition

edit

Let there be two spaces, the space of images   and the space of labels  . The space of labels is finite.

Let   be a probability distribution over   that we wish to judge.

Let a discriminator be a function of type  where   is the set of all probability distributions on  . For any image  , and any label  , let   be the probability that image   has label  , according to the discriminator. It is usually implemented as an Inception-v3 network trained on ImageNet.

The Inception Score of   relative to   is Equivalent rewrites include    is nonnegative by Jensen's inequality.

Pseudocode:

INPUT discriminator  .

INPUT generator  .

Sample images   from generator.

Compute  , the probability distribution over labels conditional on image  .

Sum up the results to obtain  , an empirical estimate of  .

Sample more images   from generator, and for each, compute  .

Average the results, and take its exponential.

RETURN the result.

Interpretation

edit

A higher inception score is interpreted as "better", as it means that   is a "sharp and distinct" collection of pictures.

 , where   is the total number of possible labels.

  iff for almost all   That means   is completely "indistinct". That is, for any image   sampled from  , discriminator returns exactly the same label predictions  .

The highest inception score   is achieved if and only if the two conditions are both true:

  • For almost all  , the distribution   is concentrated on one label. That is,  . That is, every image sampled from   is exactly classified by the discriminator.
  • For every label  , the proportion of generated images labelled as   is exactly  . That is, the generated images are equally distributed over all labels.

References

edit
  1. ^ Salimans, Tim; Goodfellow, Ian; Zaremba, Wojciech; Cheung, Vicki; Radford, Alec; Chen, Xi; Chen, Xi (2016). "Improved Techniques for Training GANs". Advances in Neural Information Processing Systems. 29. Curran Associates, Inc. arXiv:1606.03498.
  2. ^ Frolov, Stanislav; Hinz, Tobias; Raue, Federico; Hees, Jörn; Dengel, Andreas (December 2021). "Adversarial text-to-image synthesis: A review". Neural Networks. 144: 187–209. arXiv:2101.09983. doi:10.1016/j.neunet.2021.07.019. PMID 34500257. S2CID 231698782.
  3. ^ Borji, Ali (2022). "Pros and cons of GAN evaluation measures: New developments". Computer Vision and Image Understanding. 215: 103329. arXiv:2103.09396. doi:10.1016/j.cviu.2021.103329. S2CID 232257836.