Jianwei (John) Miao is a Professor in the Department of Physics and Astronomy and the California NanoSystems Institute at the University of California, Los Angeles. He performed the first experiment on extending crystallography to allow structural determination of non-crystalline specimens in 1999,[1] which has been known as coherent diffractive imaging (CDI), lensless imaging, or computational microscopy.[2] In 2012, Miao applied the CDI method to pioneer atomic electron tomography (AET), enabling the first determination of 3D atomic structures without assuming crystallinity or averaging.[3][4]

Jianwei (John) Miao
BornNovember 1969
EducationHangzhou University (now Zhejiang University) (BS, 1991)
Chinese Academy of Sciences(MS, 1994)
State University of New York at Stony Brook(PhD, 1999)
Known forCoherent Diffractive Imaging
Atomic Electron Tomography
3D atomic structure of amorphous solids
Scientific career
FieldsPhysics, Materials science, Microscopy
InstitutionsSLAC National Accelerator Laboratory, Stanford University (2000 – 2004)
University of California, Los Angeles (2004 – present)
Doctoral advisorDavid Sayre, Janos Kirz
Websitehttps://www.physics.ucla.edu/research/imaging

Career

edit

Miao received a BS in physics from Hangzhou University (now Zhejiang University) in 1991, and an MS in physics from the Institute of High Energy Physics, Chinese Academy of Sciences in 1994.[5] He then moved to the U.S. and received a PhD in physics, an M.S. in computer science, and an advanced graduate certificate in biomedical engineering from the State University of New York at Stony Brook in 1999.[5] After obtaining his PhD, Miao became a staff scientist in the Stanford Synchrotron Radiation Lightsource at the SLAC National Accelerator Laboratory. In 2004, he moved to UCLA as an assistant professor and was promoted to full professor in 2009.[1] He has served as the Deputy Director of the STROBE NSF Science and Technology Center since 2016.[6]

Research

edit

Miao pioneered the development of novel imaging methods using x-rays and electrons, and contributed to theory, computation, and experiment. He proposed the oversampling ratio concept in 1998, which explains under what conditions the phase problem of non-crystalline specimens can be solved.[7] In 1999, he conducted the first CDI experiment[1] at the National Synchrotron Light Source, Brookhaven National Laboratory. CDI methods, such as plane-wave CDI, ptychography[8] (i.e., scanning CDI[9]) and Bragg CDI, have been broadly implemented using synchrotron radiation, x-ray free electron lasers, high harmonic generation, electron and optical microscopy.[2] It has also become one of the justifications for the construction of x-ray free electron lasers worldwide.[2]

In 2012, Miao applied CDI phase retrieval algorithms to tomography and demonstrated AET at 2.4 Å resolution without assuming crystallinity.[3] He then applied AET to observe nearly all the atoms in a Pt nanoparticle,[10] and imaged the 3D core structure of edge and screw dislocations at atomic resolution.[11] In 2015, he determined the 3D coordinates of thousands of individual atoms in a material with a 3D precision of 19 pm and addressed Richard Feynman’s 1959 challenge.[12] Later, Miao measured the 3D coordinates of more than 23,000 atoms in an FePt nanoparticle, and correlated chemical order/disorder and crystal defects with material properties at the single-atom level.[13] In 2019, he developed 4D AET to observe crystal nucleation at atomic resolution, showing early stage nucleation results contradict classical nucleation theory.[14] Miao also demonstrated scanning AET (sAET) to correlate the 3D atomic defects and electronic properties of 2D materials.[15] In 2021, he determined for the first time the 3D atomic structure of amorphous solids and observed the medium-range order in amorphous materials.[16][17][18]

Awards

edit

References

edit
  1. ^ a b c Miao, J.; Charalambous, P.; Kirz, J.; Sayre, D. (1999). "Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens". Nature. 400 (6742): 342–344. Bibcode:1999Natur.400..342M. doi:10.1038/22498. S2CID 4327928.
  2. ^ a b c Miao, J.; Ishikawa, T.; Robinson, I. K.; Murnane, M. M. (2015). "Beyond crystallography: Diffractive imaging using coherent x-ray light sources". Science. 348 (6234): 530–535. Bibcode:2015Sci...348..530M. doi:10.1126/science.aaa1394. PMID 25931551. S2CID 206632996.
  3. ^ a b Scott, M. C.; Chen, C. C.; Mecklenburg, M.; Zhu, C.; Xu, X.; Ercius, P.; Dahmen, U.; Regan, B. C.; Miao, J. (2012). "Electron tomography at 2.4-ångström resolution". Nature. 483 (7390): 444–447. Bibcode:2012Natur.483..444S. doi:10.1038/nature10934. PMID 22437612. S2CID 1600103.
  4. ^ Miao, J.; Ercius, P.; Billinge, S. J. L. (2016). "Atomic electron tomography: 3D structures without crystals". Science. 353 (6306): aaf2157. doi:10.1126/science.aaf2157. PMID 27708010. S2CID 30174421.
  5. ^ a b "Jianwei (John) Miao, Professor at UCLA".
  6. ^ "STROBE NSF Science & Technology Center".
  7. ^ Miao, J.; Sayre, D.; Chapman, H. N. (1998). "Phase Retrieval from the Magnitude of the Fourier transform of Non-periodic Objects". J. Opt. Soc. Am. A. 15 (6): 1662–1669. Bibcode:1998JOSAA..15.1662M. doi:10.1364/JOSAA.15.001662.
  8. ^ Rodenburg, J. M.; Hurst, A. C.; Cullis, A. G.; Dobson, B. R.; Pfeiffer, F.; Bunk, O.; David, C.; Jefimovs, K.; Johnson, I. (2007). "Hard-X-Ray Lensless Imaging of Extended Objects". Physical Review Letters. 98 (3): 034801. Bibcode:2007PhRvL..98c4801R. doi:10.1103/PhysRevLett.98.034801. PMID 17358687.
  9. ^ Thibault, P.; Dierolf, M.; Menzel, A.; Bunk, O.; David, C.; Pfeiffer, F. (2008). "High-Resolution Scanning X-ray Diffraction Microscopy". Science. 321 (5887): 379–382. Bibcode:2008Sci...321..379T. doi:10.1126/science.1158573. PMID 18635796. S2CID 30125688.
  10. ^ "A Nature video on AET". YouTube.
  11. ^ Chen, C. C.; Zhu, C.; White, E. R.; Chiu, C.-Y.; Scott, M. C.; Regan, B. C.; Marks, L. D.; Huang, Y.; Miao, J. (2013). "Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution". Nature. 496 (7443): 74–77. Bibcode:2013Natur.496...74C. doi:10.1038/nature12009. PMID 23535594. S2CID 4410909.
  12. ^ Xu, R.; Chen, C.-C.; Wu, L.; Scott, M. C.; Theis, W.; Ophus, C.; Bartels, M.; Yang, Y.; Ramezani-Dakhel, H.; Sawaya, M. R.; Heinz, H.; Marks, L. D.; Ercius, P.; Miao, J. (2015). "Three-Dimensional Coordinates of Individual Atoms in Materials Revealed by Electron Tomography". Nat. Mater. 14 (11): 1099–1103. arXiv:1505.05938. Bibcode:2015NatMa..14.1099X. doi:10.1038/nmat4426. PMID 26390325. S2CID 5455024.
  13. ^ Yang, Y.; Chen, C.-C.; Scott, M. C.; Ophus, C.; Xu, R.; Pryor Jr, A.; Wu, L.; Sun, F.; Theis, W.; Zhou, J.; Eisenbach, M.; Kent, P. R. C.; Sabirianov, R. F.; Zeng, H.; Ercius, P.; Miao, J. (2017). "Deciphering chemical order/disorder and material properties at the single-atom level". Nature. 542 (7639): 75–79. arXiv:1607.02051. Bibcode:2017Natur.542...75Y. doi:10.1038/nature21042. PMID 28150758. S2CID 4464276.
  14. ^ Zhou, J.; Yang, Y.; Yang, Y.; Kim, D. S.; Yuan, A.; Tian, X.; Ophus, C.; Sun, F.; Schmid, A. K.; Nathanson, M.; Heinz, H.; An, Q.; Zeng, H.; Ercius, P.; Miao, J (2019). "Observing crystal nucleation in four dimensions using atomic electron tomography". Nature. 570 (7762): 500–503. Bibcode:2019Natur.570..500Z. doi:10.1038/s41586-019-1317-x. PMID 31243385. S2CID 195657117.
  15. ^ Tian, X.; Kim, D. S.; Yang, S.; Ciccarino, S., C. J.; Gong, Y.; Yang, Y.; Yang, Y.; Duschatko, B.; Yuan, Y.; Ajayan, P. M.; Idrobo, J. C.; Narang, P.; Miao, J. (2020). "Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides". Nat. Mater. 19 (8): 867–873. Bibcode:2020NatMa..19..867T. doi:10.1038/s41563-020-0636-5. OSTI 1631219. PMID 32152562. S2CID 212642445.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ Yang, Y.; Zhou, J.; Zhu, F.; Yuan, Y.; Chang, D.; Kim, D. S.; Pham, M.; Rana, A.; Tian, X.; Yao, Y.; Osher, S.; Schmid, A. K.; Hu, L.; Ercius, P.; Miao, J. (2021). "Determining the three-dimensional atomic structure of an amorphous solid". Nature. 592 (7852): 60–64. arXiv:2004.02266. Bibcode:2021Natur.592...60Y. doi:10.1038/s41586-021-03354-0. PMID 33790443. S2CID 214802235.
  17. ^ Voyles, P. (2021). "Atomic structure of a glass imaged at last". Nature. 592 (7852): 31–32. doi:10.1038/d41586-021-00794-6. PMID 33790449. S2CID 232481931.
  18. ^ Yuan, Y.; Kim, D. S.; Zhou, J.; Chang, D. J.; Zhu, F.; Nagaoka, Y.; Yang, Y.; Pham, M.; Osher, S. J.; Chen, O.; Ercius, P.; Schmid, A. K.; Miao, J. (2022). "Three-dimensional atomic packing in amorphous solids with liquid-like structure". Nat. Mater. 21 (1): 95–102. Bibcode:2022NatMa..21...95Y. doi:10.1038/s41563-021-01114-z. PMID 34663951. S2CID 239022109.
  19. ^ "Kavli Frontiers of Science".
  20. ^ "UCLA News".
  21. ^ "MRS Innovation in Materials Characterization Award".