K. Andre Mkhoyan (born 1974) is the Ray D. and Mary T. Johnson Chair and Professor in the Department of Chemical Engineering and Materials Science at the University of Minnesota.[1] He is recognized for advancing both fundamental scientific understanding and diverse applications of scanning transmission electron microscopy (STEM) techniques. He was elected as a Fellow of the Microscopy Society of America in 2024 for "seminal contributions to the understanding of electron beam channeling, quantification of imaging and spectroscopy in STEM, and for his discovery of fundamentally new behavior in crystal point and line defects using STEM."[2] According to Web of Science, he has produced over 180 published works that have been cited over 9800 times, with an h-index of 44 as of October 25, 2024.[3]

K. Andre Mkhoyan
Born1974
Alma materYerevan State University, Armenia (1996)
Cornell University (M.S. 2003, Ph.D. 2004)
TitleK. Andre Mkhoyan
AwardsFellow, Microscopy Society of America

Early life and education

edit

Andre Mkhoyan was born in 1974 in Yerevan, Armenia. He received his high school diploma from the prestigious Artashes Shahinyan Physics-Mathematics School. In 1996, Mkhoyan graduated with a B.Sc. (Hons.) in Physics from the Yerevan State University. Following graduation, he moved to the United States to pursue a research career specialized in transmission electron microscopy (TEM). After working at Bell Labs as a research scientist in support of the SCALPEL projection electron-beam lithography project, he began graduate studies in Applied and Engineering Physics at Cornell University in 1999. Working under the supervision of Professor John Silcox (1935–2024), Mkhoyan received his M.S. in Engineering Physics in 2003 and Ph.D. in Applied Physics in 2004. His dissertation was titled "Scanning Transmission Electron Microscopy Study of III-V Nitrides."[4]

In his postdoctoral research studies, Mkhoyan worked with Professor Silcox at Cornell as well as with Dr. Philip E. Batson at the IBM TJ Watson Lab. In this period, he was one of the first people to work on a prototype aberration-corrected STEM on a VG microscope retro-fitted with a NION probe-corrector. He worked extensively on understanding electron beam channeling, spectroscopy and quantification methods during this time. In 2008, Mkhoyan joined the University of Minnesota as an Assistant Professor of Chemical Engineering and Materials Science where he continues to be a professor and lead an electron microscopy research group. He is also the chair for the Electron Microscopy Management Committee at the University of Minnesota.

Scientific contributions

edit

Mkhoyan has contributed to fundamental studies of electron microscopy physics as well as pioneered challenging applications of high resolution analytical STEM, specifically, multimodal use of EELS and EDX signals in conjunction with annular dark-field imaging to materials science. He has been credited for pushing the boundaries of atomic-resolution analytical STEM for the better understanding of point, line and planar defects, including discoveries of two new line defects[5][6] and interaction mechanisms between dopant atoms and dislocations.[7] He has worked extensively on development of new methods of STEM-based atomic-resolution imaging and EELS spectroscopy of highly-beam-sensitive zeolites and metal organic frameworks.[8][9][10] and atomic-resolution in-situ STEM work.[11] His research has improved understanding of electron beam channeling and quantification of imaging and EELS spectroscopy in STEM, which includes identification of the factors behind electron beam channeling even in non-periodic crystals[12] and discovery of new kind of sub-atomic beam channeling.[13]

Works

edit

Andre Mkhoyan has authored numerous journal articles describing significant advances in STEM, defects in materials, nanoporous materials, complex oxides, and two-dimensional/single-layer materials which includes but is not limited to:

  1. Dopant Segregation Inside and Outside Dislocation Cores in Perovskite BaSnO3 and Reconstruction of the Local Atomic and Electronic Structures; H. Yun; A. Prakash; T. Birol; B. Jalan, K. A. Mkhoyan; Nano Lett. 21, 10, 4357 (2021)[7]
  2. Metallic line defect in wide-bandgap transparent perovskite BaSnO3; H. Yun, M. Topsakal, A. Prakash, B. Jalan, J. S. Jeong, T. Birol, K. A. Mkhoyan; Sci. Adv. 7, eabd4449 (2021)[6]
  3. Uncovering atomic migrations behind magnetic tunnel junction breakdown; H. Yun, D. Lyu, Y. Lv, B. R. Zink, P. Khanal, B. Zhou, W. G. Wang, J. P. Wang, K. A. Mkhoyan; ACS Nano 18, 25708 (2024)[14]
  4. One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport; P. Kumar, D. W. Kim, N. Rangnekar, H. Xu, E. O. Fetisov, S. Ghosh, H. Zhang, Q. Xiao, M. Shete, J. I. Siepmann, T. Dumitrica, B. McCool, M. Tsapatsis, K. A. Mkhoyan; Nature Mater. 19, 443 (2020)[9]
  5. A New Line Defect in NdTiO3 Perovskite; J. S. Jeong, M. Topsakal, P. Xu, B. Jalan, R. M. Wentzcovitch, K. A. Mkhoyan; Nano Lett. 16, 6816 (2016)[5]
  6. Probing core-electron orbitals by scanning transmission electron microscopy and measuring the delocalization of core-level excitations; J. S. Jeong, M. L. Odlyzko, P. Xu, B. Jalan, and K. A. Mkhoyan; Phys. Rev. B 93, 165140 (2016)[15]
  7. Imaging 'Invisible' Dopant Atoms in Semiconductor Nanocrystals; A. A. Gunawan, K. A. Mkhoyan, A. W. Wills, M. G. Thomas, D. J. Norris; Nano Lett. 11, 5553 (2011)[16]
  8. Radiolysis to knock-on damage transition in zeolites under electron beam irradiation; O. Ugurlu, J. Haus, A. A. Gunawan, M. G. Thomas, S. Maheshwari, M. Tsapatsis, K. A. Mkhoyan; Phys Rev B, 83, 113408 (2011)[8]
  9. Atomic and Electronic Structure of Graphene-Oxide; K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla; Nano Lett. 9, 1058 (2009)[17]
  10. Full recovery of electron damage in glass at ambient temperatures; K.A. Mkhoyan, J. Silcox, A. Ellison, D. Ast, R. Dieckmann, Phys. Rev. Lett. 96, 205506 (2006)[18]

References

edit
  1. ^ "Andre Mkhoyan". cse.umn.edu. Retrieved 2024-10-25.
  2. ^ "MSA | MSA Fellows". microscopy.org. Retrieved 2024-10-25.
  3. ^ "Web of Science". www.webofscience.com. Retrieved 2024-10-25.
  4. ^ "Scanning transmission electron microscopy study of III-V nitrides - ProQuest". www.proquest.com. ProQuest 304812501. Retrieved 2024-10-25.
  5. ^ a b Jeong, Jong Seok; Topsakal, Mehmet; Xu, Peng; Jalan, Bharat; Wentzcovitch, Renata M.; Mkhoyan, K. Andre (2016-11-09). "A New Line Defect in NdTiO 3 Perovskite". Nano Letters. 16 (11): 6816–6822. arXiv:1607.06415. Bibcode:2016NanoL..16.6816J. doi:10.1021/acs.nanolett.6b02532. ISSN 1530-6984. PMID 27736081.
  6. ^ a b Yun, Hwanhui; Topsakal, Mehmet; Prakash, Abhinav; Jalan, Bharat; Jeong, Jong Seok; Birol, Turan; Mkhoyan, K. Andre (2021-01-15). "Metallic line defect in wide-bandgap transparent perovskite BaSnO 3". Science Advances. 7 (3). Bibcode:2021SciA....7.4449Y. doi:10.1126/sciadv.abd4449. ISSN 2375-2548. PMC 7810381. PMID 33523903.
  7. ^ a b Yun, Hwanhui; Prakash, Abhinav; Birol, Turan; Jalan, Bharat; Mkhoyan, K. Andre (2021-05-26). "Dopant Segregation Inside and Outside Dislocation Cores in Perovskite BaSnO 3 and Reconstruction of the Local Atomic and Electronic Structures". Nano Letters. 21 (10): 4357–4364. arXiv:2103.03982. Bibcode:2021NanoL..21.4357Y. doi:10.1021/acs.nanolett.1c00966. ISSN 1530-6984. PMID 33973791.
  8. ^ a b Ugurlu, O.; Haus, J.; Gunawan, A. A.; Thomas, M. G.; Maheshwari, S.; Tsapatsis, M.; Mkhoyan, K. A. (2011-03-29). "Radiolysis to knock-on damage transition in zeolites under electron beam irradiation". Physical Review B. 83 (11): 113408. Bibcode:2011PhRvB..83k3408U. doi:10.1103/PhysRevB.83.113408. ISSN 1098-0121.
  9. ^ a b Kumar, Prashant; Kim, Dae Woo; Rangnekar, Neel; Xu, Hao; Fetisov, Evgenii O.; Ghosh, Supriya; Zhang, Han; Xiao, Qiang; Shete, Meera; Siepmann, J. Ilja; Dumitrica, Traian; McCool, Benjamin; Tsapatsis, Michael; Mkhoyan, K. Andre (April 2020). "One-dimensional intergrowths in two-dimensional zeolite nanosheets and their effect on ultra-selective transport". Nature Materials. 19 (4): 443–449. Bibcode:2020NatMa..19..443K. doi:10.1038/s41563-019-0581-3. ISSN 1476-4660. PMID 32094494.
  10. ^ Jeon, Mi Young; Kim, Donghun; Kumar, Prashant; Lee, Pyung Soo; Rangnekar, Neel; Bai, Peng; Shete, Meera; Elyassi, Bahman; Lee, Han Seung; Narasimharao, Katabathini; Basahel, Sulaiman Nasir; Al-Thabaiti, Shaeel; Xu, Wenqian; Cho, Hong Je; Fetisov, Evgenii O. (March 2017). "Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets". Nature. 543 (7647): 690–694. Bibcode:2017Natur.543..690J. doi:10.1038/nature21421. ISSN 1476-4687. PMID 28297708.
  11. ^ Yun, Hwanhui; Zhang, Delin; Birol, Turan; Wang, Jian-Ping; Mkhoyan, K. Andre (2023-08-23). "Structural Anisotropy-Driven Atomic Mechanisms of Phase Transformations in the Pt–Sn System". Nano Letters. 23 (16): 7576–7583. Bibcode:2023NanoL..23.7576Y. doi:10.1021/acs.nanolett.3c02162. ISSN 1530-6984. PMID 37535801.
  12. ^ Wu, Ryan J.; Mittal, Anudha; Odlyzko, Michael L.; Mkhoyan, K. Andre (August 2017). "Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM)". Microscopy and Microanalysis. 23 (4): 794–808. Bibcode:2017MiMic..23..794W. doi:10.1017/S143192761700068X. ISSN 1431-9276. PMID 28673372.
  13. ^ Jeong, Jong Seok; Song, Hosup; Held, Jacob T.; Mkhoyan, K. Andre (2019-02-20). "Subatomic Channeling and Helicon-Type Beams in SrTiO 3". Physical Review Letters. 122 (7): 075501. arXiv:1808.03348. doi:10.1103/PhysRevLett.122.075501. ISSN 0031-9007. PMID 30848623.
  14. ^ Yun, Hwanhui; Lyu, Deyuan; Lv, Yang; Zink, Brandon R.; Khanal, Pravin; Zhou, Bowei; Wang, Wei-Gang; Wang, Jian-Ping; Mkhoyan, K. Andre (2024-09-17). "Uncovering Atomic Migrations Behind Magnetic Tunnel Junction Breakdown". ACS Nano. 18 (37): 25708–25715. doi:10.1021/acsnano.4c08023. ISSN 1936-0851. PMID 39163394.
  15. ^ Jeong, Jong Seok; Odlyzko, Michael L.; Xu, Peng; Jalan, Bharat; Mkhoyan, K. Andre (2016-04-26). "Probing core-electron orbitals by scanning transmission electron microscopy and measuring the delocalization of core-level excitations". Physical Review B. 93 (16): 165140. Bibcode:2016PhRvB..93p5140J. doi:10.1103/PhysRevB.93.165140. ISSN 2469-9950.
  16. ^ Gunawan, Aloysius A.; Mkhoyan, K. Andre; Wills, Andrew W.; Thomas, Malcolm G.; Norris, David J. (2011-12-14). "Imaging "Invisible" Dopant Atoms in Semiconductor Nanocrystals". Nano Letters. 11 (12): 5553–5557. Bibcode:2011NanoL..11.5553G. doi:10.1021/nl2034688. hdl:20.500.11850/422888. ISSN 1530-6984. PMID 22107439.
  17. ^ Mkhoyan, K. Andre; Contryman, Alexander W.; Silcox, John; Stewart, Derek A.; Eda, Goki; Mattevi, Cecilia; Miller, Steve; Chhowalla, Manish (2009-03-11). "Atomic and Electronic Structure of Graphene-Oxide". Nano Letters. 9 (3): 1058–1063. Bibcode:2009NanoL...9.1058M. doi:10.1021/nl8034256. ISSN 1530-6984. PMID 19199476.
  18. ^ Mkhoyan, K. A.; Silcox, J.; Ellison, A.; Ast, D.; Dieckmann, R. (2006-05-26). "Full Recovery of Electron Damage in Glass at Ambient Temperatures". Physical Review Letters. 96 (20): 205506. Bibcode:2006PhRvL..96t5506M. doi:10.1103/PhysRevLett.96.205506. ISSN 0031-9007. PMID 16803186.