In mathematics, Macdonald-Koornwinder polynomials (also called Koornwinder polynomials) are a family of orthogonal polynomials in several variables, introduced by Koornwinder[1] and I. G. Macdonald,[2] that generalize the Askey–Wilson polynomials. They are the Macdonald polynomials attached to the non-reduced affine root system of type (C∨
n, Cn), and in particular satisfy analogues of Macdonald's conjectures.[3] In addition Jan Felipe van Diejen showed that the Macdonald polynomials associated to any classical root system can be expressed as limits or special cases of Macdonald-Koornwinder polynomials and found complete sets of concrete commuting difference operators diagonalized by them.[4] Furthermore, there is a large class of interesting families of multivariable orthogonal polynomials associated with classical root systems which are degenerate cases of the Macdonald-Koornwinder polynomials.[5] The Macdonald-Koornwinder polynomials have also been studied with the aid of affine Hecke algebras.[6]
The Macdonald-Koornwinder polynomial in n variables associated to the partition λ is the unique Laurent polynomial invariant under permutation and inversion of variables, with leading monomial xλ, and orthogonal with respect to the density
on the unit torus
- ,
where the parameters satisfy the constraints
and (x;q)∞ denotes the infinite q-Pochhammer symbol. Here leading monomial xλ means that μ≤λ for all terms xμ with nonzero coefficient, where μ≤λ if and only if μ1≤λ1, μ1+μ2≤λ1+λ2, …, μ1+…+μn≤λ1+…+λn. Under further constraints that q and t are real and that a, b, c, d are real or, if complex, occur in conjugate pairs, the given density is positive.
Citations
edit- ^ Koornwinder 1992.
- ^ Macdonald 1987, important special cases[full citation needed]
- ^ van Diejen 1996; Sahi 1999; Macdonald 2003, Chapter 5.3.
- ^ van Diejen 1995.
- ^ van Diejen 1999.
- ^ Noumi 1995; Sahi 1999; Macdonald 2003.
References
edit- Koornwinder, Tom H. (1992), "Askey-Wilson polynomials for root systems of type BC", Contemporary Mathematics, 138: 189–204, doi:10.1090/conm/138/1199128, MR 1199128, S2CID 14028685
- van Diejen, Jan F. (1996), "Self-dual Koornwinder-Macdonald polynomials", Inventiones Mathematicae, 126 (2): 319–339, arXiv:q-alg/9507033, Bibcode:1996InMat.126..319V, doi:10.1007/s002220050102, MR 1411136, S2CID 17405644
- Sahi, S. (1999), "Nonsymmetric Koornwinder polynomials and duality", Annals of Mathematics, Second Series, 150 (1): 267–282, arXiv:q-alg/9710032, doi:10.2307/121102, JSTOR 121102, MR 1715325, S2CID 8958999
- van Diejen, Jan F. (1995), "Commuting difference operators with polynomial eigenfunctions", Compositio Mathematica, 95: 183–233, arXiv:funct-an/9306002, MR 1313873
- van Diejen, Jan F. (1999), "Properties of some families of hypergeometric orthogonal polynomials in several variables", Trans. Amer. Math. Soc., 351: 233–70, arXiv:q-alg/9604004, doi:10.1090/S0002-9947-99-02000-0, MR 1433128, S2CID 16214156
- Noumi, M. (1995), "Macdonald-Koornwinder polynomials and affine Hecke rings", Various Aspects of Hypergeometric Functions, Surikaisekikenkyusho Kokyuroku (in Japanese), vol. 919, pp. 44–55, MR 1388325
- Macdonald, I. G. (2003), Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, vol. 157, Cambridge: Cambridge University Press, pp. x+175, ISBN 978-0-521-82472-9, MR 1976581
- Stokman, Jasper V. (2004), "Lecture notes on Koornwinder polynomials", Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Hauppauge, NY: Nova Science Publishers, pp. 145–207, MR 2085855