f
(
x
)
{\displaystyle f(x)\,}
f
~
(
n
)
{\displaystyle {\tilde {f}}(n)\,}
x
n
{\displaystyle x^{n}\,}
2
n
+
1
(
n
!
)
2
(
2
n
+
1
)
!
{\displaystyle {\frac {2^{n+1}(n!)^{2}}{(2n+1)!}}}
e
a
x
{\displaystyle e^{ax}\,}
2
π
a
I
n
+
1
/
2
(
a
)
{\displaystyle {\sqrt {\frac {2\pi }{a}}}I_{n+1/2}(a)}
e
i
a
x
{\displaystyle e^{iax}\,}
2
π
a
i
n
J
n
+
1
/
2
(
a
)
{\displaystyle {\sqrt {\frac {2\pi }{a}}}i^{n}J_{n+1/2}(a)}
x
f
(
x
)
{\displaystyle xf(x)\,}
1
2
n
+
1
[
(
n
+
1
)
f
~
(
n
+
1
)
+
n
f
~
(
n
−
1
)
]
{\displaystyle {\frac {1}{2n+1}}[(n+1){\tilde {f}}(n+1)+n{\tilde {f}}(n-1)]}
(
1
−
x
2
)
−
1
/
2
{\displaystyle (1-x^{2})^{-1/2}\,}
π
P
n
2
(
0
)
{\displaystyle \pi P_{n}^{2}(0)}
[
2
(
a
−
x
)
]
−
1
{\displaystyle [2(a-x)]^{-1}\,}
Q
n
(
a
)
{\displaystyle Q_{n}(a)}
(
1
−
2
a
x
+
a
2
)
−
1
/
2
,
|
a
|
<
1
{\displaystyle (1-2ax+a^{2})^{-1/2},\ |a|<1\,}
2
a
n
(
2
n
+
1
)
−
1
{\displaystyle 2a^{n}(2n+1)^{-1}}
(
1
−
2
a
x
+
a
2
)
−
3
/
2
,
|
a
|
<
1
{\displaystyle (1-2ax+a^{2})^{-3/2},\ |a|<1\,}
2
a
n
(
1
−
a
2
)
−
1
{\displaystyle 2a^{n}(1-a^{2})^{-1}}
∫
0
a
t
b
−
1
d
t
(
1
−
2
x
t
+
t
2
)
1
/
2
,
|
a
|
<
1
b
>
0
{\displaystyle \int _{0}^{a}{\frac {t^{b-1}\,dt}{(1-2xt+t^{2})^{1/2}}},\ |a|<1\ b>0\,}
2
a
n
+
b
(
2
n
+
1
)
(
n
+
b
)
{\displaystyle {\frac {2a^{n+b}}{(2n+1)(n+b)}}}
d
d
x
[
(
1
−
x
2
)
d
d
x
]
f
(
x
)
{\displaystyle {\frac {d}{dx}}\left[(1-x^{2}){\frac {d}{dx}}\right]f(x)\,}
−
n
(
n
+
1
)
f
~
(
n
)
{\displaystyle -n(n+1){\tilde {f}}(n)}
{
d
d
x
[
(
1
−
x
2
)
d
d
x
]
}
k
f
(
x
)
{\displaystyle \left\{{\frac {d}{dx}}\left[(1-x^{2}){\frac {d}{dx}}\right]\right\}^{k}f(x)\,}
(
−
1
)
k
n
k
(
n
+
1
)
k
f
~
(
n
)
{\displaystyle (-1)^{k}n^{k}(n+1)^{k}{\tilde {f}}(n)}
f
(
x
)
4
−
d
d
x
[
(
1
−
x
2
)
d
d
x
]
f
(
x
)
{\displaystyle {\frac {f(x)}{4}}-{\frac {d}{dx}}\left[(1-x^{2}){\frac {d}{dx}}\right]f(x)\,}
(
n
+
1
2
)
2
f
~
(
n
)
{\displaystyle \left(n+{\frac {1}{2}}\right)^{2}{\tilde {f}}(n)}
ln
(
1
−
x
)
{\displaystyle \ln(1-x)\,}
{
2
(
ln
2
−
1
)
,
n
=
0
−
2
n
(
n
+
1
)
,
n
>
0
{\displaystyle {\begin{cases}2(\ln 2-1),&n=0\\-{\frac {2}{n(n+1)}},&n>0\end{cases}}\,}
f
(
x
)
∗
g
(
x
)
{\displaystyle f(x)*g(x)\,}
f
~
(
n
)
g
~
(
n
)
{\displaystyle {\tilde {f}}(n){\tilde {g}}(n)}
∫
−
1
x
f
(
t
)
d
t
{\displaystyle \int _{-1}^{x}f(t)\,dt\,}
{
f
~
(
0
)
−
f
~
(
1
)
,
n
=
0
f
~
(
n
−
1
)
−
f
~
(
n
+
1
)
2
n
+
1
,
n
>
1
{\displaystyle {\begin{cases}{\tilde {f}}(0)-{\tilde {f}}(1),&n=0\\{\frac {{\tilde {f}}(n-1)-{\tilde {f}}(n+1)}{2n+1}},&n>1\end{cases}}\,}
d
d
x
g
(
x
)
,
g
(
x
)
=
∫
−
1
x
f
(
t
)
d
t
{\displaystyle {\frac {d}{dx}}g(x),\ g(x)=\int _{-1}^{x}f(t)\,dt}
g
(
1
)
−
∫
−
1
1
g
(
x
)
d
d
x
P
n
(
x
)
d
x
{\displaystyle g(1)-\int _{-1}^{1}g(x){\frac {d}{dx}}P_{n}(x)\,dx}