Legendre transform (integral transform)

In mathematics, Legendre transform is an integral transform named after the mathematician Adrien-Marie Legendre, which uses Legendre polynomials as kernels of the transform. Legendre transform is a special case of Jacobi transform.

The Legendre transform of a function is[1][2][3]

The inverse Legendre transform is given by

Associated Legendre transform

edit

Associated Legendre transform is defined as

 

The inverse Legendre transform is given by

 

Some Legendre transform pairs

edit
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

References

edit
  1. ^ Debnath, Lokenath; Dambaru Bhatta (2007). Integral transforms and their applications (2nd ed.). Boca Raton: Chapman & Hall/CRC. ISBN 9781482223576.
  2. ^ Churchill, R. V. (1954). "The Operational Calculus of Legendre Transforms". Journal of Mathematics and Physics. 33 (1–4): 165–178. doi:10.1002/sapm1954331165. hdl:2027.42/113680.
  3. ^ Churchill, R. V., and C. L. Dolph. "Inverse transforms of products of Legendre transforms." Proceedings of the American Mathematical Society 5.1 (1954): 93–100.