Linda Young (scientist)

Linda Young is a distinguished fellow at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and a professor at the University of Chicago’s Department of Physics and James Franck Institute. Young is also the former director of Argonne’s X-ray Science Division.

Linda Young
Alma materUniversity of California, Berkeley (PhD), MIT (S.B.)
EmployerArgonne National Laboratory
OrganizationUniversity of Chicago
Known forX-ray science
AwardsHelmholtz International Fellow (2017)
Websitehttps://www.anl.gov/profile/linda-young

Young is an expert in the field of X-ray science.[1] For her contributions to the field, The Helmholtz Association—Germany’s largest scientific organization—awarded Young the Helmholtz International Fellow Award in 2017.[2] Young is also a fellow of the American Physical Society and has served on multiple scientific advisory boards. She currently chairs the scientific advisory committee for the Photon Science Directorate of the Paul Scherrer Institute and has previously served on the European XFEL, Helmholtz-Zentrum Berlin, and DESY Scientific Councils.

Early life and education

edit

Young earned her Ph.D. from the University of California, Berkeley in 1981, and her bachelor of science degree from Massachusetts Institute of Technology in 1976. After completing her post-doctoral studies at the University of Chicago, Young joined Argonne’s Physics Division.[3] From 1994 until 2010, Young led the AMO Physics Group within the laboratory, and from 2009 until 2015, she directed Argonne’s X-ray Science Division.

Major research contributions

edit

Ultra-Intense X-ray interactions

edit

Young has worked extensively on understanding x-ray atom interactions in the ultrahigh intensity regime provided by x-ray free-electron lasers.[4][5][6] She led the first scientific experiment at the Linac Coherent Light Source—the world’s first hard x-ray free electron laser—and has co-authored multiple studies that have established the dominant multiphoton and nonlinear x-ray interaction mechanisms with atoms. Young also investigates the electron dynamics driven by X-ray free-electron lasers (XFEL); understanding transient electron configurations within XFEL-irradiated samples is critical to single-shot x-ray imaging applications.[7][8][9][10]

X-ray Photoionization & Inner Shell processes

edit

Young has conducted research to understand and control x-ray photoionization and inner-shell processes, including non-dipole photoionization[11][12] Compton Double ionization[13] Rayleigh vs Compton Scattering[14] double K-photoionization[15] x-ray probes of optical strong-field processes[16][17][18][19][20][21][22] optical control of X-ray absorption via electromagnetically induced transparency (EIT)-like phenomena[23][24] and X-ray pump/X-ray probe studies of inner-shell dynamics.[25][26]

Ultrastable, High-Repetition Rate Pump-Probe X-ray Studies

edit

Young has worked with Argonne’s AMO Physics Group and other collaborators on developing an ultrastable, high-repetition rate, widely tunable, polarized picosecond X-ray pump/probe capabilities. These developments will enable researchers to track laser-controlled molecular dynamics in condensed phases with specificity.[27][28][29]

Atom Trap Trace Analysis (ATTA)

edit

Young was part of the research team that developed the Atom Trap Trace Analysis (ATTA) methodology for counting atoms of rare isotopes whose isotopic abundances are less than one part in a trillion.[30][31] ATTA is a tool that extends radiocarbon dating from 5000 yr to 200 kyr, operating on long-lived isotopes where radioactive decay counting is inefficient. ATTA has been used with 81Kr to date the groundwater of ancient aquifers.[32][33][34][35][36][37]

Awards, honors, and membership

edit
  • Awarded Helmholtz International Fellowship, 2017
  • Invited speaker at the Nobel Symposium on Free Electron Laser Research, 2015[38]
  • Received a Distinguished Performance Award from the University of Chicago, 2007[39]
  • Named a Fellow of the American Physical Society, 2000
  • Elected Chair of the American Physical Society's Division of Molecular and Optical Physics., 2011[40]

References

edit
  1. ^ "DESY News: Helmholtz International Fellow Award for Linda Young". www.desy.de. Retrieved 2020-05-22.
  2. ^ "Young Awarded Helmholtz International Fellow Leading Up To Start of Powerful New X-ray Laser | Argonne National Laboratory". www.anl.gov. 9 August 2016. Retrieved 2020-05-27.
  3. ^ "Linda Young | Department of Physics | The University of Chicago". physics.uchicago.edu. Retrieved 2020-05-22.
  4. ^ "3D potential through laser annihilation". phys.org. Retrieved 2020-05-27.
  5. ^ "Ultrafast imaging of complex systems in 3D at near atomic resolution nears". phys.org. Retrieved 2020-05-27.
  6. ^ "Researchers Observe Ultrafast Birth of Free Radicals in Water". www.cfel.de. Retrieved 2020-05-27.
  7. ^ Young, L.; Kanter, E. P.; Krässig, B.; Li, Y.; March, A. M.; Pratt, S. T.; Santra, R.; Southworth, S. H.; Rohringer, N.; DiMauro, L. F.; Doumy, G. (2010-07-01). "Femtosecond electronic response of atoms to ultra-intense X-rays". Nature. 466 (7302): 56–61. Bibcode:2010Natur.466...56Y. doi:10.1038/nature09177. ISSN 1476-4687. PMID 20596013. S2CID 205221300.
  8. ^ Kanter, E. P.; Krässig, B.; Li, Y.; March, A. M.; Ho, P.; Rohringer, N.; Santra, R.; Southworth, S. H.; DiMauro, L. F.; Doumy, G.; Roedig, C. A. (2011-11-30). "Unveiling and Driving Hidden Resonances with High-Fluence, High-Intensity X-Ray Pulses". Physical Review Letters. 107 (23): 233001. Bibcode:2011PhRvL.107w3001K. doi:10.1103/PhysRevLett.107.233001. PMID 22182083.
  9. ^ Doumy, G.; Roedig, C.; Son, S.-K.; Blaga, C. I.; DiChiara, A. D.; Santra, R.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Cryan, J. P. (2011-02-24). "Nonlinear Atomic Response to Intense Ultrashort X Rays". Physical Review Letters. 106 (8): 083002. Bibcode:2011PhRvL.106h3002D. doi:10.1103/PhysRevLett.106.083002. PMID 21405568.
  10. ^ Ho, Phay J.; Bostedt, Christoph; Schorb, Sebastian; Young, Linda (2014-12-18). "Theoretical Tracking of Resonance-Enhanced Multiple Ionization Pathways in X-ray Free-Electron Laser Pulses". Physical Review Letters. 113 (25): 253001. Bibcode:2014PhRvL.113y3001H. doi:10.1103/PhysRevLett.113.253001. PMID 25554879.
  11. ^ Krässig, B.; Jung, M.; Gemmell, D. S.; Kanter, E. P.; LeBrun, T.; Southworth, S. H.; Young, L. (1995-12-25). "Nondipolar Asymmetries of Photoelectron Angular Distributions". Physical Review Letters. 75 (26): 4736–4739. Bibcode:1995PhRvL..75.4736K. doi:10.1103/PhysRevLett.75.4736. PMID 10059984.
  12. ^ Jung, M.; Krässig, B.; Gemmell, D. S.; Kanter, E. P.; LeBrun, T.; Southworth, S. H.; Young, L. (1996-09-01). "Experimental determination of nondipolar angular distribution parameters for photoionization in the Ar K and Kr L shells". Physical Review A. 54 (3): 2127–2136. Bibcode:1996PhRvA..54.2127J. doi:10.1103/PhysRevA.54.2127. PMID 9913703.
  13. ^ Krässig, B.; Dunford, R. W.; Gemmell, D. S.; Hasegawa, S.; Kanter, E. P.; Schmidt-Böcking, H.; Schmitt, W.; Southworth, S. H.; Weber, Th.; Young, L. (1999-07-05). "Compton Double Ionization of Helium in the Region of the Cross-Section Maximum". Physical Review Letters. 83 (1): 53–56. Bibcode:1999PhRvL..83...53K. doi:10.1103/PhysRevLett.83.53.
  14. ^ Jung, M.; Dunford, R. W.; Gemmell, D. S.; Kanter, E. P.; Krässig, B.; LeBrun, T. W.; Southworth, S. H.; Young, L.; Carney, J. P. J.; LaJohn, L.; Pratt, R. H. (1998-08-24). "Manifestations of Nonlocal Exchange, Correlation, and Dynamic Effects in X-Ray Scattering". Physical Review Letters. 81 (8): 1596–1599. Bibcode:1998PhRvL..81.1596J. doi:10.1103/PhysRevLett.81.1596.
  15. ^ Southworth, S. H.; Kanter, E. P.; Krässig, B.; Young, L.; Armen, G. B.; Levin, J. C.; Ederer, D. L.; Chen, M. H. (2003-06-24). "Double K-shell photoionization of neon". Physical Review A. 67 (6): 062712. Bibcode:2003PhRvA..67f2712S. doi:10.1103/PhysRevA.67.062712.
  16. ^ Young, L.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Höhr, C.; Kanter, E. P.; Krässig, B.; Landahl, E. C.; Peterson, E. R.; Rudati, J. (2006-08-21). "X-Ray Microprobe of Orbital Alignment in Strong-Field Ionized Atoms". Physical Review Letters. 97 (8): 083601. Bibcode:2006PhRvL..97h3601Y. doi:10.1103/PhysRevLett.97.083601. PMID 17026302.
  17. ^ Santra, Robin; Dunford, Robert W.; Young, Linda (2006-10-06). "Spin-orbit effect on strong-field ionization of krypton". Physical Review A. 74 (4): 043403. Bibcode:2006PhRvA..74d3403S. doi:10.1103/PhysRevA.74.043403.
  18. ^ Höhr, C.; Peterson, E. R.; Rohringer, N.; Rudati, J.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Kanter, E. P.; Krässig, B.; Landahl, E. C. (2007-01-30). "Alignment dynamics in a laser-produced plasma". Physical Review A. 75 (1): 011403. Bibcode:2007PhRvA..75a1403H. doi:10.1103/PhysRevA.75.011403.
  19. ^ Southworth, S. H.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Höhr, C.; Kanter, E. P.; Krässig, B.; Landahl, E. C.; Peterson, E. R.; Rudati, J. (2007-10-24). "$K$-edge x-ray-absorption spectroscopy of laser-generated ${\text{Kr}}^{+}$ and ${\text{Kr}}^{2+}$". Physical Review A. 76 (4): 043421. doi:10.1103/PhysRevA.76.043421.
  20. ^ Peterson, E. R.; Buth, C.; Arms, D. A.; Dunford, R. W.; Kanter, E. P.; Krässig, B.; Landahl, E. C.; Pratt, S. T.; Santra, R.; Southworth, S. H.; Young, L. (2008-03-03). "An x-ray probe of laser-aligned molecules". Applied Physics Letters. 92 (9): 094106. arXiv:0802.1894. Bibcode:2008ApPhL..92i4106P. doi:10.1063/1.2890846. ISSN 0003-6951. S2CID 118370929.
  21. ^ Kanter, E. P.; Santra, R.; Höhr, C.; Peterson, E. R.; Rudati, J.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Krässig, B.; Landahl, E. C. (2008-10-01). "Characterization of the spatiotemporal evolution of laser-generated plasmas". Journal of Applied Physics. 104 (7): 073307–073307–7. Bibcode:2008JAP...104g3307K. doi:10.1063/1.2991339. ISSN 0021-8979.
  22. ^ Krässig, Bertold; Dunford, R. W.; Kanter, E. P.; Landahl, E. C.; Southworth, S. H.; Young, L. (2009-04-27). "A simple cross-correlation technique between infrared and hard x-ray pulses". Applied Physics Letters. 94 (17): 171113. Bibcode:2009ApPhL..94q1113K. doi:10.1063/1.3125256. ISSN 0003-6951.
  23. ^ Buth, Christian; Santra, Robin; Young, Linda (2007-06-20). "Electromagnetically Induced Transparency for X Rays". Physical Review Letters. 98 (25): 253001. arXiv:0705.3615. Bibcode:2007PhRvL..98y3001B. doi:10.1103/PhysRevLett.98.253001. PMID 17678019. S2CID 10697283.
  24. ^ Glover, T. E.; Hertlein, M. P.; Southworth, S. H.; Allison, T. K.; van Tilborg, J.; Kanter, E. P.; Krässig, B.; Varma, H. R.; Rude, B.; Santra, R.; Belkacem, A. (2010). "Controlling X-rays with light". Nature Physics. 6 (1): 69–74. Bibcode:2010NatPh...6...69G. doi:10.1038/nphys1430. ISSN 1745-2481. OSTI 986321. S2CID 59475385. Retrieved 2020-05-22.
  25. ^ Picón, A.; Lehmann, C. S.; Bostedt, C.; Rudenko, A.; Marinelli, A.; Osipov, T.; Rolles, D.; Berrah, N.; Bomme, C.; Bucher, M.; Doumy, G. (2016-05-23). "Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics". Nature Communications. 7 (1): 11652. Bibcode:2016NatCo...711652P. doi:10.1038/ncomms11652. ISSN 2041-1723. PMC 4879250. PMID 27212390.
  26. ^ Lehmann, C. S.; Picón, A.; Bostedt, C.; Rudenko, A.; Marinelli, A.; Moonshiram, D.; Osipov, T.; Rolles, D.; Berrah, N.; Bomme, C.; Bucher, M. (2016-07-26). "Ultrafast x-ray-induced nuclear dynamics in diatomic molecules using femtosecond x-ray-pump--x-ray-probe spectroscopy". Physical Review A. 94 (1): 013426. arXiv:1801.03092. Bibcode:2016PhRvA..94a3426L. doi:10.1103/PhysRevA.94.013426.
  27. ^ March, Anne Marie; Stickrath, Andrew; Doumy, Gilles; Kanter, Elliot P.; Krässig, Bertold; Southworth, Stephen H.; Attenkofer, Klaus; Kurtz, Charles A.; Chen, Lin X.; Young, Linda (2011-07-01). "Development of high-repetition-rate laser pump/x-ray probe methodologies for synchrotron facilities". Review of Scientific Instruments. 82 (7): 073110–073110–8. Bibcode:2011RScI...82g3110M. doi:10.1063/1.3615245. ISSN 0034-6748. PMID 21806175.
  28. ^ March, Anne Marie; Assefa, Tadesse A.; Bressler, Christian; Doumy, Gilles; Galler, Andreas; Gawelda, Wojciech; Kanter, Elliot P.; Németh, Zoltán; Pápai, Mátyás; Southworth, Stephen H.; Young, Linda (2015-07-02). "Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species". The Journal of Physical Chemistry C. 119 (26): 14571–14578. doi:10.1021/jp511838q. ISSN 1932-7447. PMC 4634714. PMID 26568779.
  29. ^ March, Anne Marie; Doumy, Gilles; Andersen, Amity; Al Haddad, Andre; Kumagai, Yoshiaki; Tu, Ming-Feng; Bang, Joohee; Bostedt, Christoph; Uhlig, Jens; Nascimento, Daniel R.; Assefa, Tadesse A. (2019-10-10). "Elucidation of the photoaquation reaction mechanism in ferrous hexacyanide using synchrotron x-rays with sub-pulse-duration sensitivity". The Journal of Chemical Physics. 151 (14): 144306. Bibcode:2019JChPh.151n4306M. doi:10.1063/1.5117318. ISSN 0021-9606. OSTI 1608558. PMID 31615248. S2CID 204740043.
  30. ^ "81Kr 85Kr 39Ar Atom Trap Trace Analysis | Laboratory for Radio-Krypton Dating | Argonne Physics Division". www.phy.anl.gov. Retrieved 2020-05-22.
  31. ^ Chen, C. Y.; Li, Y. M.; Bailey, K.; O'Connor, T. P.; Young, L.; Lu, Z.-T. (1999-11-05). "Ultrasensitive Isotope Trace Analyses with a Magneto-Optical Trap". Science. 286 (5442): 1139–1141. doi:10.1126/science.286.5442.1139. ISSN 0036-8075. PMID 10550048.
  32. ^ Bailey, K; Chen, C. Y; Du, X; Li, Y. M; Lu, Z. -T; O'Connor, T. P; Young, L (2000-10-01). "ATTA – A new method of ultrasensitive isotope trace analysis". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 8th International Conference on Accelerator Mass Spectrometry. 172 (1): 224–227. Bibcode:2000NIMPB.172..224B. doi:10.1016/S0168-583X(00)00215-9. ISSN 0168-583X.
  33. ^ Bailey, K.; Chen, C.Y.; Du, X.; Li, Y.M.; Lu, Z. T.; O'Connor, T.P.; Young, L. (2000-08-01). "Atom trap trace analysis". Hyperfine Interactions. 127 (1): 515–518. Bibcode:2000HyInt.127..515B. doi:10.1023/A:1012698508113. ISSN 1572-9540. S2CID 102527918.
  34. ^ Kohler, M.; Daerr, H.; Sahling, P.; Sieveke, C.; Jerschabek, N.; Kalinowski, M. B.; Becker, C.; Sengstock, K. (2014-10-01). "All-optical production and trapping of metastable noble-gas atoms down to the single-atom regime". EPL (Europhysics Letters). 108 (1): 13001. arXiv:1408.1794. Bibcode:2014EL....10813001K. doi:10.1209/0295-5075/108/13001. ISSN 0295-5075.
  35. ^ Du, X.; Purtschert, R.; Bailey, K.; Lehmann, B. E.; Lorenzo, R.; Lu, Z.-T.; Mueller, P.; O'Connor, T. P.; Sturchio, N. C.; Young, L. (2003). "A new method of measuring 81Kr and 85Kr abundances in environmental samples". Geophysical Research Letters. 30 (20): 2068. arXiv:physics/0311118. Bibcode:2003GeoRL..30.2068D. doi:10.1029/2003GL018293. ISSN 1944-8007. S2CID 119528934.
  36. ^ Sturchio, N. C.; Du, X.; Purtschert, R.; Lehmann, B. E.; Sultan, M.; Patterson, L. J.; Lu, Z.-T.; Müller, P.; Bigler, T.; Bailey, K.; O'Connor, T. P. (2004). "One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36". Geophysical Research Letters. 31 (5): n/a. arXiv:physics/0402092. Bibcode:2004GeoRL..31.5503S. doi:10.1029/2003GL019234. ISSN 1944-8007. S2CID 119483319.
  37. ^ Du, X.; Bailey, K.; Lu, Z.-T.; Mueller, P.; O’Connor, T. P.; Young, L. (2004-09-20). "An atom trap system for practical 81Kr dating". Review of Scientific Instruments. 75 (10): 3224–3232. Bibcode:2004RScI...75.3224D. doi:10.1063/1.1790562. ISSN 0034-6748.
  38. ^ "Nobel Symposium on Free Electron Laser Research June 14-18, 2015 at Sigtunahöjden, Sigtuna (14-18 June 2015)". agenda.nordita.org. Retrieved 2020-05-22.
  39. ^ "Distinguished Performance Award to Michael Borland | Advanced Photon Source". www.aps.anl.gov. 31 May 2007. Retrieved 2020-05-22.
  40. ^ "Argonne scientist elected chair of American Physical Society division | Argonne National Laboratory". www.anl.gov. 19 July 2011. Retrieved 2020-05-22.