In classical mechanics , a Liouville dynamical system is an exactly solvable dynamical system in which the kinetic energy T and potential energy V can be expressed in terms of the s generalized coordinates q as follows:[ 1]
T
=
1
2
{
u
1
(
q
1
)
+
u
2
(
q
2
)
+
⋯
+
u
s
(
q
s
)
}
{
v
1
(
q
1
)
q
˙
1
2
+
v
2
(
q
2
)
q
˙
2
2
+
⋯
+
v
s
(
q
s
)
q
˙
s
2
}
{\displaystyle T={\frac {1}{2}}\left\{u_{1}(q_{1})+u_{2}(q_{2})+\cdots +u_{s}(q_{s})\right\}\left\{v_{1}(q_{1}){\dot {q}}_{1}^{2}+v_{2}(q_{2}){\dot {q}}_{2}^{2}+\cdots +v_{s}(q_{s}){\dot {q}}_{s}^{2}\right\}}
V
=
w
1
(
q
1
)
+
w
2
(
q
2
)
+
⋯
+
w
s
(
q
s
)
u
1
(
q
1
)
+
u
2
(
q
2
)
+
⋯
+
u
s
(
q
s
)
{\displaystyle V={\frac {w_{1}(q_{1})+w_{2}(q_{2})+\cdots +w_{s}(q_{s})}{u_{1}(q_{1})+u_{2}(q_{2})+\cdots +u_{s}(q_{s})}}}
The solution of this system consists of a set of separably integrable equations
2
Y
d
t
=
d
φ
1
E
χ
1
−
ω
1
+
γ
1
=
d
φ
2
E
χ
2
−
ω
2
+
γ
2
=
⋯
=
d
φ
s
E
χ
s
−
ω
s
+
γ
s
{\displaystyle {\frac {\sqrt {2}}{Y}}\,dt={\frac {d\varphi _{1}}{\sqrt {E\chi _{1}-\omega _{1}+\gamma _{1}}}}={\frac {d\varphi _{2}}{\sqrt {E\chi _{2}-\omega _{2}+\gamma _{2}}}}=\cdots ={\frac {d\varphi _{s}}{\sqrt {E\chi _{s}-\omega _{s}+\gamma _{s}}}}}
where E = T + V is the conserved energy and the
γ
s
{\displaystyle \gamma _{s}}
are constants. As described below, the variables have been changed from qs to φs , and the functions us and ws substituted by their counterparts χs and ωs . This solution has numerous applications, such as the orbit of a small planet about two fixed stars under the influence of Newtonian gravity . The Liouville dynamical system is one of several things named after Joseph Liouville , an eminent French mathematician.
Example of bicentric orbits
edit
In classical mechanics , Euler's three-body problem describes the motion of a particle in a plane under the influence of two fixed centers, each of which attract the particle with an inverse-square force such as Newtonian gravity or Coulomb's law . Examples of the bicenter problem include a planet moving around two slowly moving stars , or an electron moving in the electric field of two positively charged nuclei , such as the first ion of the hydrogen molecule H2 , namely the hydrogen molecular ion or H2 + . The strength of the two attractions need not be equal; thus, the two stars may have different masses or the nuclei two different charges.
Let the fixed centers of attraction be located along the x -axis at ±a . The potential energy of the moving particle is given by
V
(
x
,
y
)
=
−
μ
1
(
x
−
a
)
2
+
y
2
−
μ
2
(
x
+
a
)
2
+
y
2
.
{\displaystyle V(x,y)={\frac {-\mu _{1}}{\sqrt {\left(x-a\right)^{2}+y^{2}}}}-{\frac {\mu _{2}}{\sqrt {\left(x+a\right)^{2}+y^{2}}}}.}
The two centers of attraction can be considered as the foci of a set of ellipses. If either center were absent, the particle would move on one of these ellipses, as a solution of the Kepler problem . Therefore, according to Bonnet's theorem , the same ellipses are the solutions for the bicenter problem.
Introducing elliptic coordinates ,
x
=
a
cosh
ξ
cos
η
,
{\displaystyle x=a\cosh \xi \cos \eta ,}
y
=
a
sinh
ξ
sin
η
,
{\displaystyle y=a\sinh \xi \sin \eta ,}
the potential energy can be written as
V
(
ξ
,
η
)
=
−
μ
1
a
(
cosh
ξ
−
cos
η
)
−
μ
2
a
(
cosh
ξ
+
cos
η
)
=
−
μ
1
(
cosh
ξ
+
cos
η
)
−
μ
2
(
cosh
ξ
−
cos
η
)
a
(
cosh
2
ξ
−
cos
2
η
)
,
{\displaystyle V(\xi ,\eta )={\frac {-\mu _{1}}{a\left(\cosh \xi -\cos \eta \right)}}-{\frac {\mu _{2}}{a\left(\cosh \xi +\cos \eta \right)}}={\frac {-\mu _{1}\left(\cosh \xi +\cos \eta \right)-\mu _{2}\left(\cosh \xi -\cos \eta \right)}{a\left(\cosh ^{2}\xi -\cos ^{2}\eta \right)}},}
and the kinetic energy as
T
=
m
a
2
2
(
cosh
2
ξ
−
cos
2
η
)
(
ξ
˙
2
+
η
˙
2
)
.
{\displaystyle T={\frac {ma^{2}}{2}}\left(\cosh ^{2}\xi -\cos ^{2}\eta \right)\left({\dot {\xi }}^{2}+{\dot {\eta }}^{2}\right).}
This is a Liouville dynamical system if ξ and η are taken as φ1 and φ2 , respectively; thus, the function Y equals
Y
=
cosh
2
ξ
−
cos
2
η
{\displaystyle Y=\cosh ^{2}\xi -\cos ^{2}\eta }
and the function W equals
W
=
−
μ
1
(
cosh
ξ
+
cos
η
)
−
μ
2
(
cosh
ξ
−
cos
η
)
{\displaystyle W=-\mu _{1}\left(\cosh \xi +\cos \eta \right)-\mu _{2}\left(\cosh \xi -\cos \eta \right)}
Using the general solution for a Liouville dynamical system below, one obtains
m
a
2
2
(
cosh
2
ξ
−
cos
2
η
)
2
ξ
˙
2
=
E
cosh
2
ξ
+
(
μ
1
+
μ
2
a
)
cosh
ξ
−
γ
{\displaystyle {\frac {ma^{2}}{2}}\left(\cosh ^{2}\xi -\cos ^{2}\eta \right)^{2}{\dot {\xi }}^{2}=E\cosh ^{2}\xi +\left({\frac {\mu _{1}+\mu _{2}}{a}}\right)\cosh \xi -\gamma }
m
a
2
2
(
cosh
2
ξ
−
cos
2
η
)
2
η
˙
2
=
−
E
cos
2
η
+
(
μ
1
−
μ
2
a
)
cos
η
+
γ
{\displaystyle {\frac {ma^{2}}{2}}\left(\cosh ^{2}\xi -\cos ^{2}\eta \right)^{2}{\dot {\eta }}^{2}=-E\cos ^{2}\eta +\left({\frac {\mu _{1}-\mu _{2}}{a}}\right)\cos \eta +\gamma }
Introducing a parameter u by the formula
d
u
=
d
ξ
E
cosh
2
ξ
+
(
μ
1
+
μ
2
a
)
cosh
ξ
−
γ
=
d
η
−
E
cos
2
η
+
(
μ
1
−
μ
2
a
)
cos
η
+
γ
,
{\displaystyle du={\frac {d\xi }{\sqrt {E\cosh ^{2}\xi +\left({\frac {\mu _{1}+\mu _{2}}{a}}\right)\cosh \xi -\gamma }}}={\frac {d\eta }{\sqrt {-E\cos ^{2}\eta +\left({\frac {\mu _{1}-\mu _{2}}{a}}\right)\cos \eta +\gamma }}},}
gives the parametric solution
u
=
∫
d
ξ
E
cosh
2
ξ
+
(
μ
1
+
μ
2
a
)
cosh
ξ
−
γ
=
∫
d
η
−
E
cos
2
η
+
(
μ
1
−
μ
2
a
)
cos
η
+
γ
.
{\displaystyle u=\int {\frac {d\xi }{\sqrt {E\cosh ^{2}\xi +\left({\frac {\mu _{1}+\mu _{2}}{a}}\right)\cosh \xi -\gamma }}}=\int {\frac {d\eta }{\sqrt {-E\cos ^{2}\eta +\left({\frac {\mu _{1}-\mu _{2}}{a}}\right)\cos \eta +\gamma }}}.}
Since these are elliptic integrals , the coordinates ξ and η can be expressed as elliptic functions of u .
The bicentric problem has a constant of motion, namely,
r
1
2
r
2
2
d
θ
1
d
t
d
θ
2
d
t
+
2
c
(
μ
1
cos
θ
1
−
μ
2
cos
θ
2
)
,
{\displaystyle r_{1}^{2}\,r_{2}^{2}{\frac {d\theta _{1}}{dt}}{\frac {d\theta _{2}}{dt}}+2\,c\left(\mu _{1}\cos \theta _{1}-\mu _{2}\cos \theta _{2}\right),}
from which the problem can be solved using the method of the last multiplier.
To eliminate the v functions, the variables are changed to an equivalent set
φ
r
=
∫
d
q
r
v
r
(
q
r
)
,
{\displaystyle \varphi _{r}=\int dq_{r}{\sqrt {v_{r}(q_{r})}},}
giving the relation
v
1
(
q
1
)
q
˙
1
2
+
v
2
(
q
2
)
q
˙
2
2
+
⋯
+
v
s
(
q
s
)
q
˙
s
2
=
φ
˙
1
2
+
φ
˙
2
2
+
⋯
+
φ
˙
s
2
=
F
,
{\displaystyle v_{1}(q_{1}){\dot {q}}_{1}^{2}+v_{2}(q_{2}){\dot {q}}_{2}^{2}+\cdots +v_{s}(q_{s}){\dot {q}}_{s}^{2}={\dot {\varphi }}_{1}^{2}+{\dot {\varphi }}_{2}^{2}+\cdots +{\dot {\varphi }}_{s}^{2}=F,}
which defines a new variable F . Using the new variables, the u and w functions can be expressed by equivalent functions χ and ω. Denoting the sum of the χ functions by Y ,
Y
=
χ
1
(
φ
1
)
+
χ
2
(
φ
2
)
+
⋯
+
χ
s
(
φ
s
)
,
{\displaystyle Y=\chi _{1}(\varphi _{1})+\chi _{2}(\varphi _{2})+\cdots +\chi _{s}(\varphi _{s}),}
the kinetic energy can be written as
T
=
1
2
Y
F
.
{\displaystyle T={\frac {1}{2}}YF.}
Similarly, denoting the sum of the ω functions by W
W
=
ω
1
(
φ
1
)
+
ω
2
(
φ
2
)
+
⋯
+
ω
s
(
φ
s
)
,
{\displaystyle W=\omega _{1}(\varphi _{1})+\omega _{2}(\varphi _{2})+\cdots +\omega _{s}(\varphi _{s}),}
the potential energy V can be written as
V
=
W
Y
.
{\displaystyle V={\frac {W}{Y}}.}
The Lagrange equation for the r th variable
φ
r
{\displaystyle \varphi _{r}}
is
d
d
t
(
∂
T
∂
φ
˙
r
)
=
d
d
t
(
Y
φ
˙
r
)
=
1
2
F
∂
Y
∂
φ
r
−
∂
V
∂
φ
r
.
{\displaystyle {\frac {d}{dt}}\left({\frac {\partial T}{\partial {\dot {\varphi }}_{r}}}\right)={\frac {d}{dt}}\left(Y{\dot {\varphi }}_{r}\right)={\frac {1}{2}}F{\frac {\partial Y}{\partial \varphi _{r}}}-{\frac {\partial V}{\partial \varphi _{r}}}.}
Multiplying both sides by
2
Y
φ
˙
r
{\displaystyle 2Y{\dot {\varphi }}_{r}}
, re-arranging, and exploiting the relation 2T = YF yields the equation
2
Y
φ
˙
r
d
d
t
(
Y
φ
˙
r
)
=
2
T
φ
˙
r
∂
Y
∂
φ
r
−
2
Y
φ
˙
r
∂
V
∂
φ
r
=
2
φ
˙
r
∂
∂
φ
r
[
(
E
−
V
)
Y
]
,
{\displaystyle 2Y{\dot {\varphi }}_{r}{\frac {d}{dt}}\left(Y{\dot {\varphi }}_{r}\right)=2T{\dot {\varphi }}_{r}{\frac {\partial Y}{\partial \varphi _{r}}}-2Y{\dot {\varphi }}_{r}{\frac {\partial V}{\partial \varphi _{r}}}=2{\dot {\varphi }}_{r}{\frac {\partial }{\partial \varphi _{r}}}\left[(E-V)Y\right],}
which may be written as
d
d
t
(
Y
2
φ
˙
r
2
)
=
2
E
φ
˙
r
∂
Y
∂
φ
r
−
2
φ
˙
r
∂
W
∂
φ
r
=
2
E
φ
˙
r
d
χ
r
d
φ
r
−
2
φ
˙
r
d
ω
r
d
φ
r
,
{\displaystyle {\frac {d}{dt}}\left(Y^{2}{\dot {\varphi }}_{r}^{2}\right)=2E{\dot {\varphi }}_{r}{\frac {\partial Y}{\partial \varphi _{r}}}-2{\dot {\varphi }}_{r}{\frac {\partial W}{\partial \varphi _{r}}}=2E{\dot {\varphi }}_{r}{\frac {d\chi _{r}}{d\varphi _{r}}}-2{\dot {\varphi }}_{r}{\frac {d\omega _{r}}{d\varphi _{r}}},}
where E = T + V is the (conserved) total energy. It follows that
d
d
t
(
Y
2
φ
˙
r
2
)
=
2
d
d
t
(
E
χ
r
−
ω
r
)
,
{\displaystyle {\frac {d}{dt}}\left(Y^{2}{\dot {\varphi }}_{r}^{2}\right)=2{\frac {d}{dt}}\left(E\chi _{r}-\omega _{r}\right),}
which may be integrated once to yield
1
2
Y
2
φ
˙
r
2
=
E
χ
r
−
ω
r
+
γ
r
,
{\displaystyle {\frac {1}{2}}Y^{2}{\dot {\varphi }}_{r}^{2}=E\chi _{r}-\omega _{r}+\gamma _{r},}
where the
γ
r
{\displaystyle \gamma _{r}}
are constants of integration subject to the energy conservation
∑
r
=
1
s
γ
r
=
0.
{\displaystyle \sum _{r=1}^{s}\gamma _{r}=0.}
Inverting, taking the square root and separating the variables yields a set of separably integrable equations:
2
Y
d
t
=
d
φ
1
E
χ
1
−
ω
1
+
γ
1
=
d
φ
2
E
χ
2
−
ω
2
+
γ
2
=
⋯
=
d
φ
s
E
χ
s
−
ω
s
+
γ
s
.
{\displaystyle {\frac {\sqrt {2}}{Y}}dt={\frac {d\varphi _{1}}{\sqrt {E\chi _{1}-\omega _{1}+\gamma _{1}}}}={\frac {d\varphi _{2}}{\sqrt {E\chi _{2}-\omega _{2}+\gamma _{2}}}}=\cdots ={\frac {d\varphi _{s}}{\sqrt {E\chi _{s}-\omega _{s}+\gamma _{s}}}}.}