In the mathematical field of differential geometry a Liouville surface[1] (named after Joseph Liouville) is a type of surface which in local coordinates may be written as a graph in R3

such that the first fundamental form is of the form

Sometimes a metric of this form is called a Liouville metric. Every surface of revolution is a Liouville surface.

Darboux[2] gives a general treatment of such surfaces considering a two-dimensional space with metric

where and are functions of and and are functions of . A geodesic line on such a surface is given by

and the distance along the geodesic is given by

Here is a constant related to the direction of the geodesic by

where is the angle of the geodesic measured from a line of constant . In this way, the solution of geodesics on Liouville surfaces is reduced to quadrature. This was first demonstrated by Jacobi for the case of geodesics on a triaxial ellipsoid,[3] a special case of a Liouville surface.

Notes

edit

References

edit
  • Darboux, Jean-Gaston (1894). Leçons sur la théorie générale des surfaces [Lessons on the General Theory of Surfaces] (in French). Vol. 3. Gauthier-Villars.
  • Gelfand, I.M. & Fomin, S.V. (2000). Calculus of variations. Dover. ISBN 0-486-41448-5. (Translated from the Russian by R. Silverman.)
  • Guggenheimer, Heinrich (1977). "Chapter 11: Inner geometry of surfaces". Differential Geometry. Dover. ISBN 0-486-63433-7.
  • Jacobi, C. G. J. (1839). "Note von der geodätischen Linie auf einem Ellipsoid und den verschiedenen Anwendungen einer merkwürdigen analytischen Substitution" [The geodesic on an ellipsoid and various applications of a remarkable analytical substitution]. Journal für die Reine und Angewandte Mathematik (in German). 1839 (19): 309–313. doi:10.1515/crll.1839.19.309. S2CID 121670851.
  • Liouville, Joseph (1846). "Sur quelques cas particuliers où les équations du mouvement d'un point matériel peuvent s'intégrer" [Special cases where the equations of motion are integrable] (PDF). Journal de Mathématiques Pures et Appliquées (in French). 11: 345–378.