List of textbooks on relativity

Special relativity

edit

The primary sources section of the latter article in particular contains many additional (early) publications of importance in the field.

  • Lorentz, Hendrik (1892). "De relatieve beweging van de aarde en den aether". Zittingsverlag Akad. (in Dutch). 5 (1): 74–79.

:For a translation see: s:Translation:The Relative Motion of the Earth and the Aether. Hendrik Lorentz was a major influence on Einstein's theory of special relativity. Lorentz laid the fundamentals for the work by Einstein and the theory was originally called the Lorentz-Einstein theory. After 1905 Lorentz wrote several papers on what he called "Einstein's principle of relativity".

:Introduced the special theory of relativity. Reconciled Maxwell's equations for electricity and magnetism with the laws of mechanics by introducing major changes to mechanics close to the speed of light. One of the Annus Mirabilis papers.

:English translations: "Does the Inertia of a Body Depend Upon Its Energy Content?". Translation by George Barker Jeffery and Wilfrid Perrett in The Principle of Relativity, London: Methuen and Company, Ltd. (1923). :Used the newly formulated theory of special relativity to introduce the mass energy formula. One of the Annus Mirabilis papers.

* —— (21 December 1907). "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern" . Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 53–111. **English translation: The Fundamental Equations for Electromagnetic Processes in Moving Bodies. In: The Principle of Relativity (1920), Calcutta: University Press, 1-69

  • —— (21 September 1908). "Raum und Zeit" . Physikalische Zeitschrift. 10: 75–88.

** Translation by Meghnad Saha, "Space and Time" (1920): Wikisource link. : Introduced the four-vector notation and the notion of Minkowski space, which was later adopted by Einstein and others.

:Used concepts developed in the then-current textbooks (e.g., vector analysis and non-Euclidean geometry) to provide entry into mathematical physics with a vector-based introduction to quaternions and a primer on matrix notation for linear transformations of 4-vectors. The ten chapters are composed of 4 on kinematics, 3 on quaternion methods, and 3 on electromagnetism. Silberstein used biquaternions to develop Minkowski space and Lorentz transformations. The second edition published in 1924 extended relativity into gravitation theory with tensor methods, but was superseded by Eddington's text.

General relativity

edit

: This publication is the first complete account of a general relativistic theory.

:Einstein considered this the finest description of the theory of relativity in any language.[3]

References

edit
  1. ^ Alberteinstein.info
  2. ^ Greenspan, 2005, p. 100.
  3. ^ Longair, M. (6 March 2015). "Bending space-time: a commentary on Dyson, Eddington and Davidson (1920) 'A determination of the deflection of light by the Sun's gravitational field'". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2039): 20140287. Bibcode:2015RSPTA.37340287L. doi:10.1098/rsta.2014.0287. PMC 4360090. PMID 25750149.
  4. ^ Kaiser, David (March 2012). "A Tale of Two Textbooks: Experiments in Genre". Isis. 103 (1): 126–138. doi:10.1086/664983. hdl:1721.1/82907. PMID 22655343.