In magnetic systems, excitations can be found that are characterized by the orientation of the local magnetic moments of atomic cores. A magnetic skyrmionium is a ring-shaped topological spin texture and is closely related to the magnetic skyrmion.[1][2]
Topological charge
editThe topological charge can be defined as follows.[3]
With this definition, the topological charge of a skyrmion can be calculated to be ±1. A magnetic skyrmionium is a topological quasi particle that is composed of a superposition of two magnetic skyrmions of opposite topological charge adding up to zero total topological charge.[4][5] On this basis one can view the core of a skyrmionium as a skyrmion (yellow central disk in figure) with opposite charge compared to a bigger skyrmion (green disk) in which it is situated.
Spin-Texture | Topological Charge |
---|---|
Skyrmion | ±1 |
Skyrmionium | 0 |
Skyrmion-bag with n Skyrmion | ±n |
Different to magnetic skyrmions, that experience a transverse deflection under current driven motion known as the skyrmion Hall effect[6][7] (similar to the Hall effect), magnetic skyrmioniums are expected to move parallel to electrical-drive currents.[8] The current-driven motion of magnetic excitations is one example of the direct link between topological charge and a physical observable.
Theoretical predictions
editSkyrmioniums have been the subject of numerous theoretical investigations.[9][10][11] Besides theoretical predictions concerning the existence of skyrmioniums such as in the 2D Janus mono layer CrGe(Se,Te)3,[12] a lot of research concentrated on their manipulation by electrical currents,[13][14][15] spin currents[16] or spin waves.[17][18] So far, there is only little experimental evidence for the existence of magnetic skyrmioniums. One example is the observation of skyrmionium in a NiFe-CrSb2Te3 hetero-structure.[19]
Potential applications
editMagnetic excitations such as skyrmions or skyrmioniums are potential building blocks of next generation spintronic devices, which enable for instance neuromorphic computing.[20][21]
References
edit- ^ Ishida, Yuichi; Kondo, Kenji (2020-02-20). "Theoretical comparison between skyrmion and skyrmionium motions for spintronics applications". Japanese Journal of Applied Physics. 59 (SG): SGGI04. Bibcode:2020JaJAP..59GGI04I. doi:10.7567/1347-4065/ab5b6b. hdl:2115/80479. ISSN 0021-4922. S2CID 213421496.
- ^ Ponsudana, M.; Amuda, R.; Madhumathi, R.; Brinda, A.; Kanimozhi, N. (2021-10-01). "Confinement of stable skyrmionium and skyrmion state in ultrathin nanoring". Physica B: Condensed Matter. 618: 413144. Bibcode:2021PhyB..61813144P. doi:10.1016/j.physb.2021.413144. ISSN 0921-4526.
- ^ Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Tretiakov, Oleg A.; Hou, Zhipeng; Wang, Wenhong; Zhao, Guoping; Liu, Xiaoxi; Diep, Hung T.; Zhou, Yan (2020-07-06). "Current-driven skyrmionium in a frustrated magnetic system". Applied Physics Letters. 117 (1): 012403. arXiv:2005.01403. Bibcode:2020ApPhL.117a2403X. doi:10.1063/5.0012706. ISSN 0003-6951. S2CID 218487404.
- ^ Kolesnikov, Alexander G.; Stebliy, Maksim E.; Samardak, Alexander S.; Ognev, Alexey V. (2018-11-16). "Skyrmionium – high velocity without the skyrmion Hall effect". Scientific Reports. 8 (1): 16966. Bibcode:2018NatSR...816966K. doi:10.1038/s41598-018-34934-2. ISSN 2045-2322. PMC 6240074. PMID 30446670.
- ^ "skyrmionium", Wiktionary, 2019-09-29, retrieved 2022-01-02
- ^ Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang; Zhang, Wei; Wang, Xiao; Benjamin Jungfleisch, M.; Pearson, John E.; Cheng, Xuemei; Heinonen, Olle; Wang, Kang L.; Zhou, Yan (2017). "Direct observation of the skyrmion Hall effect". Nature Physics. 13 (2): 162–169. arXiv:1603.07393. doi:10.1038/nphys3883. ISSN 1745-2481. S2CID 119260600.
- ^ Chen, Gong (2017-01-23). "Skyrmion Hall effect". Nature Physics. 13 (2): 112–113. doi:10.1038/nphys4030. ISSN 1745-2481.
- ^ Kolesnikov, Alexander G.; Stebliy, Maksim E.; Samardak, Alexander S.; Ognev, Alexey V. (2018-11-16). "Skyrmionium – high velocity without the skyrmion Hall effect". Scientific Reports. 8 (1): 16966. Bibcode:2018NatSR...816966K. doi:10.1038/s41598-018-34934-2. ISSN 2045-2322. PMC 6240074. PMID 30446670.
- ^ Bo, Lan; Zhao, Rongzhi; Hu, Chenglong; Shi, Zhen; Chen, Wenchao; Zhang, Xuefeng; Yan, Mi (2020-03-03). "Formation of skyrmion and skyrmionium in confined nanodisk with perpendicular magnetic anisotropy". Journal of Physics D: Applied Physics. 53 (19): 195001. Bibcode:2020JPhD...53s5001B. doi:10.1088/1361-6463/ab6d98. ISSN 0022-3727. S2CID 213028436.
- ^ Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Ma, Yunxu; Xia, Haiyan; Wang, Jianing; Wang, Jianbo; Liu, Qingfang (2019-07-23). "Dynamics of a magnetic skyrmionium in an anisotropy gradient". Applied Physics Express. 12 (8): 083003. arXiv:1904.13332. Bibcode:2019APExp..12h3003S. doi:10.7567/1882-0786/ab30d8. ISSN 1882-0778. S2CID 140224028.
- ^ Yang, Jaehak; Park, Hyeon-Kyu; Park, Gyuyoung; Abert, Claas; Suess, Dieter; Kim, Sang-Koog (2021-10-25). "Robust formation of skyrmion and skyrmionium in magnetic hemispherical shells and their dynamic switching". Physical Review B. 104 (13): 134427. Bibcode:2021PhRvB.104m4427Y. doi:10.1103/PhysRevB.104.134427. S2CID 239980567.
- ^ Zhang, Yun; Xu, Changsong; Chen, Peng; Nahas, Yousra; Prokhorenko, Sergei; Bellaiche, Laurent (2020-12-10). "Emergence of skyrmionium in a two-dimensional ${\mathrm{CrGe}(\mathrm{Se},\mathrm{Te})}_{3}$ Janus monolayer". Physical Review B. 102 (24): 241107. doi:10.1103/PhysRevB.102.241107. S2CID 230593844.
- ^ Göbel, Börge; Schäffer, Alexander F.; Berakdar, Jamal; Mertig, Ingrid; Parkin, Stuart S. P. (2019-08-20). "Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device". Scientific Reports. 9 (1): 12119. arXiv:1902.06295. Bibcode:2019NatSR...912119G. doi:10.1038/s41598-019-48617-z. ISSN 2045-2322. PMC 6702348. PMID 31431688.
- ^ Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Tretiakov, Oleg A.; Hou, Zhipeng; Wang, Wenhong; Zhao, Guoping; Liu, Xiaoxi; Diep, Hung T.; Zhou, Yan (2020-07-06). "Current-driven skyrmionium in a frustrated magnetic system". Applied Physics Letters. 117 (1): 012403. arXiv:2005.01403. Bibcode:2020ApPhL.117a2403X. doi:10.1063/5.0012706. ISSN 0003-6951. S2CID 218487404.
- ^ Obadero, S. A.; Yamane, Y.; Akosa, C. A.; Tatara, G. (2020-07-31). "Current-driven nucleation and propagation of antiferromagnetic skyrmionium". Physical Review B. 102 (1): 014458. arXiv:1904.06870. Bibcode:2020PhRvB.102a4458O. doi:10.1103/PhysRevB.102.014458. S2CID 119308026.
- ^ Zhang, Xichao; Xia, Jing; Zhou, Yan; Wang, Daowei; Liu, Xiaoxi; Zhao, Weisheng; Ezawa, Motohiko (2016-09-19). "Control and manipulation of a magnetic skyrmionium in nanostructures". Physical Review B. 94 (9): 094420. arXiv:1604.05909. Bibcode:2016PhRvB..94i4420Z. doi:10.1103/PhysRevB.94.094420. S2CID 119245310.
- ^ Li, Sai; Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Kang, Wang; Liu, Xiaoxi; Zhou, Yan; Zhao, Weisheng (2018-04-02). "Dynamics of a magnetic skyrmionium driven by spin waves". Applied Physics Letters. 112 (14): 142404. arXiv:1802.03868. Bibcode:2018ApPhL.112n2404L. doi:10.1063/1.5026632. ISSN 0003-6951. S2CID 53082966.
- ^ Shen, Maokang; Zhang, Yue; Ou-Yang, Jun; Yang, Xiaofei; You, Long (2018-02-05). "Motion of a skyrmionium driven by spin wave". Applied Physics Letters. 112 (6): 062403. Bibcode:2018ApPhL.112f2403S. doi:10.1063/1.5010605. ISSN 0003-6951.
- ^ Zhang, Shilei; Kronast, Florian; van der Laan, Gerrit; Hesjedal, Thorsten (2018-02-14). "Real-Space Observation of Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure". Nano Letters. 18 (2): 1057–1063. Bibcode:2018NanoL..18.1057Z. doi:10.1021/acs.nanolett.7b04537. ISSN 1530-6984. PMID 29363315. S2CID 206745536.
- ^ Wang, Junlin; Xia, Jing; Zhang, Xichao; Zheng, Xiangyu; Li, Guanqi; Chen, Li; Zhou, Yan; Wu, Jing; Yin, Haihong; Chantrell, Roy; Xu, Yongbing (2020-11-16). "Magnetic skyrmionium diode with a magnetic anisotropy voltage gating". Applied Physics Letters. 117 (20): 202401. Bibcode:2020ApPhL.117t2401W. doi:10.1063/5.0025124. ISSN 0003-6951. S2CID 228863124.
- ^ Grollier, J.; Querlioz, D.; Camsari, K. Y.; Everschor-Sitte, K.; Fukami, S.; Stiles, M. D. (2020-03-02). "Neuromorphic spintronics". Nature Electronics. 3 (7): 360–370. doi:10.1038/s41928-019-0360-9. ISSN 2520-1131. PMC 7754689. PMID 33367204.