Mesorhizobium mediterraneum is a bacterium from the genus Mesorhizobium, which was isolated from root nodule of the Chickpea (Cicer arietinum) in Spain.[4][5] The species Rhizobium mediterraneum was subsequently transferred to Mesorhizobium mediterraneum.[6] This species, along with many other closely related taxa, have been found to promote production of chickpea and other crops worldwide by forming symbiotic relationships.
Mesorhizobium mediterraneum | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Pseudomonadota |
Class: | Alphaproteobacteria |
Order: | Hyphomicrobiales |
Family: | Phyllobacteriaceae |
Genus: | Mesorhizobium |
Species: | M. mediterraneum
|
Binomial name | |
Mesorhizobium mediterraneum Jarvis et al. 1997[1]
| |
Type strain | |
ATCC 51670, ATCC 700745, BCRC 15796, CCRC 15796CECT 4847, CFBP 6716, CIP 107327, DSM 11555, DSMZ 11555, HAMBI 2096, IAM 15104, ICMP 13644, JCM 21565, KACC 10664, KCTC 12158, LMG 14994, LMG 17148, NBRC 102497, Nour UPM-Ca36, ORS 2739, strain Ca-7, UPM-Ca36, USDA 3392[2] | |
Synonyms | |
Rhizobium mediterraneum[3] |
Symbiosis with Chickpea
editAs a typical species nodulating the chickpea root, M. mediterraneum forms a mutualistic symbiosis with the legume crop. The associations between M. mediterraneum and its legume hosts have been reported to be mediated by type IV secretion system (T4SS) genes such as traG[7] and improved by the addition of the clpB chaperone gene.[8] The invasion of legume by Mesorhizobium mediterraneum was also documented to involve production of hydrolytic enzymes such as xyloglucanase.[9]
Several isolates of M. mediterraneum enhanced the growth of chickpea by efficiently mobilizing phosphorus from insoluble phosphates.[10][11][12] The species could help chickpea increase production and protein content even under a moderate water deficit.[13] However, it has also been reported that nodulation by the species on chickpea was reduced by water deficiency.[14] Dual-inoculation of Glomus mosseae and M. mediterraneum helped Lathyrus sativus resist sulfate salinity stress,[15] while the growth of M.mediterraneum was also found to be intolerant of salt stress of 200 mM NaCl.[16] M. mediterraneum helped chickpea resist osmotic stress by enhancing nodular peroxidase and ascorbate peroxidase activities.[17]
Besides chickpea, Mesorhizobium mediterraneum and/or closely related taxa have also been found to form symbiotic relationships with many other crops and plants, including wild liquorice (Astragalus glycyphyllos),[18] lentil (Lens culinaris Medik),[19] the South African legume species of the genus Lessertia,[20] black locust (Robinia pseudoacacia),[21] Lotus tenuis,[22] Caragana,[23] and Astragalus cicer.[24]
Mesorhizobium mediterraneum, along with many other species, contributed to diverse rhizobia nodulating chickpea worldwide, such as Northeast China,[25][26][27] India,[28][29] the North-West Indo Gangetic Plains,[30] Ethiopia,[31] Iran,[32] and Portugal.[33][34] These findings contribute to valuable pools of isolates that hold promises for increasing chickpea production in these soil types.
References
edit- ^ LSPN lpsn.dsmz.de
- ^ Straininfo of Mesorhizobium mediterraneum
- ^ Taxonomy Brownser
- ^ ATCC
- ^ UniProt
- ^ Jarvis, B. D. W.; Van Berkum, P.; Chen, W. X.; Nour, S. M.; Fernandez, M. P.; Cleyet-Marel, J. C.; Gillis, M. (1997). "Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense To mesorhizobium gen. nov". International Journal of Systematic Bacteriology. 47 (3): 895. doi:10.1099/00207713-47-3-895.
- ^ Paço, A.; da-Silva, J. R.; Eliziário, F.; Brígido, C.; Oliveira, S.; Alexandre, A. (2019-01-30). "traG Gene Is Conserved across Mesorhizobium spp. Able to Nodulate the Same Host Plant and Expressed in Response to Root Exudates". BioMed Research International. Retrieved 2020-09-20.
- ^ Paço, Ana; Brígido, Clarisse; Alexandre, Ana; Mateos, Pedro F.; Oliveira, Solange (2016-02-04). Martinez-Abarca, Francisco (ed.). "The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene". PLOS ONE. 11 (2): e0148221. Bibcode:2016PLoSO..1148221P. doi:10.1371/journal.pone.0148221. ISSN 1932-6203. PMC 4741418. PMID 26845770.
- ^ Aranda, E.; Sampedro, I.; Tribak, M.; Arriagada, C.; Ocampo, J.A.; Garcia-Romera, I. (2005). "Xyloglucanase production by rhizobial species". Symbiosis. 38 (3): 277–284.
- ^ Rivas, R.; Peix, A.; Mateos, P. F.; Trujillo, M. E.; Martínez-Molina, E.; Velázquez, E. (2006-10-05). "Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils". Plant and Soil. 287 (1–2): 23–33. doi:10.1007/s11104-006-9062-y. ISSN 0032-079X. S2CID 410829.
- ^ Zafar, M.; Ahmed, N.; Mustafa, G.; Zahir, Z. A.; Simms, E. L. (2017-06-01). "Molecular and biochemical characterization of rhizobia from chickpea (Cicer arietinum)". Pakistan Journal of Agricultural Sciences. 54 (2): 373–381. doi:10.21162/PAKJAS/17.5874. ISSN 0552-9034.
- ^ Peix, A.; Rivas-Boyero, A.A.; Mateos, P.F.; Rodriguez-Barrueco, C.; Martı́nez-Molina, E.; Velazquez, E. (January 2001). "Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions". Soil Biology and Biochemistry. 33 (1): 103–110. doi:10.1016/S0038-0717(00)00120-6.
- ^ Oliveira, Rui S; Carvalho, Patrícia; Marques, Guilhermina; Ferreira, Luís; Nunes, Mafalda; Rocha, Inês; Ma, Ying; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena (October 2017). "Increased protein content of chickpea ( Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions: Increased protein content of inoculated chickpea under water deficit". Journal of the Science of Food and Agriculture. 97 (13): 4379–4385. doi:10.1002/jsfa.8201. hdl:10400.22/13871. PMID 28071807.
- ^ Ben Romdhane, Samir; Trabelsi, Mustapha; Aouani, Mohamed Elarbi; de Lajudie, Philippe; Mhamdi, Ridha (December 2009). "The diversity of rhizobia nodulating chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants". Soil Biology and Biochemistry. 41 (12): 2568–2572. doi:10.1016/j.soilbio.2009.09.020.
- ^ Jin, Liang; Sun, Xiangwei; Wang, Xiaojuan; Shen, Yuying; Hou, Fujiang; Chang, Shenghua; Wang, Chang (March 2010). "Synergistic interactions of arbuscular mycorrhizal fungi and rhizobia promoted the growth of Lathyrus sativus under sulphate salt stress". Symbiosis. 50 (3): 157–164. doi:10.1007/s13199-010-0058-2. ISSN 0334-5114. S2CID 7737058.
- ^ Mhamdi, Rakia; Nouairi, Issam; ben Hammouda, Thouraya; Mhamdi, Ridha; Mhadhbi, Haythem (April 2015). "Growth capacity and biochemical mechanisms involved in rhizobia tolerance to salinity and water deficit: Free living rhizobia response to abiotic constraints". Journal of Basic Microbiology. 55 (4): 451–461. doi:10.1002/jobm.201400451. PMID 25546228. S2CID 26026232.
- ^ Mhadhbi, Haythem; Jebara, Moez; Zitoun, Adel; Limam, Férid; Aouani, Mohamed Elarbi (July 2008). "Symbiotic effectiveness and response to mannitol-mediated osmotic stress of various chickpea–rhizobia associations". World Journal of Microbiology and Biotechnology. 24 (7): 1027–1035. doi:10.1007/s11274-007-9571-8. ISSN 0959-3993. S2CID 84906589.
- ^ Gnat, Sebastian; Małek, Wanda; Oleńska, Ewa; Wdowiak-Wróbel, Sylwia; Kalita, Michał; Rogalski, Jerzy; Wójcik, Magdalena (2016-04-01). "Multilocus sequence analysis supports the taxonomic position of Astragalus glycyphyllos symbionts based on DNA–DNA hybridization". International Journal of Systematic and Evolutionary Microbiology. 66 (4): 1906–1912. doi:10.1099/ijsem.0.000862. ISSN 1466-5026. PMID 26704062.
- ^ Sami, Dhaoui; Mokhtar, Rejili; Peter, Mergaert; Mohamed, Mars (August 2016). Sessitsch, Angela (ed.). "Rhizobium leguminosarum symbiovar trifolii, Ensifer numidicus and Mesorhizobium amorphae symbiovar ciceri (or Mesorhizobium loti ) are new endosymbiotic bacteria of Lens culinaris Medik". FEMS Microbiology Ecology. 92 (8): fiw118. doi:10.1093/femsec/fiw118. ISSN 1574-6941. PMID 27267929.
- ^ Gerding, Macarena; O’Hara, Graham William; Bräu, Lambert; Nandasena, Kemanthie; Howieson, John Gregory (September 2012). "Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia". Plant and Soil. 358 (1–2): 385–401. doi:10.1007/s11104-012-1153-3. ISSN 0032-079X. S2CID 15730533.
- ^ Wei, Gehong; Chen, Weimin; Zhu, Wenfei; Chen, Chun; Young, J. Peter W.; Bontemps, Cyril (June 2009). "Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts: Mesorhizobium and Sinorhizobium share symbiotic genes". FEMS Microbiology Ecology. 68 (3): 320–328. doi:10.1111/j.1574-6941.2009.00673.x. PMID 19416352.
- ^ Estrella, Mar�a Julia; Mu�oz, Socorro; Soto, Mar�a Jos�; Ruiz, Oscar; Sanju�n, Juan (2009-02-15). "Genetic Diversity and Host Range of Rhizobia Nodulating Lotus tenuis in Typical Soils of the Salado River Basin (Argentina)". Applied and Environmental Microbiology. 75 (4): 1088–1098. Bibcode:2009ApEnM..75.1088E. doi:10.1128/AEM.02405-08. ISSN 0099-2240. PMC 2643590. PMID 19074602.
- ^ Chen, Wen Feng; Guan, Su Hua; Zhao, Chun Tian; Yan, Xue Rui; Man, Chao Xin; Wang, En Tao; Chen, Wen Xin (2008-04-21). "Different Mesorhizobium species associated with Caragana carry similar symbiotic genes and have common host ranges: Caragana mesorhizobia had similar symbiotic genes". FEMS Microbiology Letters. 283 (2): 203–209. doi:10.1111/j.1574-6968.2008.01167.x. PMID 18422620.
- ^ Wdowiak, Sylwia; Małek, Wanda (2000-08-21). "Numerical Analysis of Astragalus cicer Microsymbionts". Current Microbiology. 41 (2): 142–148. doi:10.1007/s002840010108. ISSN 0343-8651. PMID 10856381. S2CID 5947654.
- ^ Zhang, Junjie; Yang, Xu; Guo, Chen; de Lajudie, Philippe; Singh, Raghvendra Pratap; Wang, Entao; Chen, Wenfeng (2017-01-01). "Mesorhizobium muleiense and Mesorhizobium gsp. nov. are symbionts of Cicer arietinum L. in alkaline soils of Gansu, Northwest China". Plant and Soil. 410 (1): 103–112. doi:10.1007/s11104-016-2987-x. ISSN 1573-5036. S2CID 35331036.
- ^ Zhang, Jun Jie; Yu, Tao; Lou, Kai; Mao, Pei Hong; Wang, En Tao; Chen, Wen Feng; Chen, Wen Xin (October 2014). "Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils". Systematic and Applied Microbiology. 37 (7): 520–524. doi:10.1016/j.syapm.2014.07.004. PMID 25123757.
- ^ Zhang, Jun Jie; Lou, Kai; Jin, Xiang; Mao, Pei Hong; Wang, En Tao; Tian, Chang Fu; Sui, Xin Hua; Chen, Wen Feng; Chen, Wen Xin (April 2012). "Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China". Plant and Soil. 353 (1–2): 123–134. doi:10.1007/s11104-011-1014-5. ISSN 0032-079X. S2CID 14447209.
- ^ Sharma, Anu; Bandamaravuri, Kishore Babu; Sharma, Anjana; Arora, Dillip K. (October 2017). "Phenotypic and molecular assessment of chickpea rhizobia from different chickpea cultivars of India". 3 Biotech. 7 (5): 327. doi:10.1007/s13205-017-0952-x. ISSN 2190-572X. PMC 5602792. PMID 28955624.
- ^ Rai, Rhitu; Dash, Prasanta K.; Mohapatra, Trilochan; Singh, Aqbal (2012). "Phenotypic and molecular characterization of indigenous rhizobia nodulating chickpea in India". Indian Journal of Experimental Biology. 50 (5): 340–350. PMID 22803324.
- ^ Singh, Raghvendra Pratap; Manchanda, Geetanjali; Singh, Ram Nageena; Srivastava, Alok Kumar; Dubey, R. C. (January 2016). "Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North-West Indo Gangetic Plains: Exploration of alkalotolerant and symbiotically efficient rhizobia". Journal of Basic Microbiology. 56 (1): 14–25. doi:10.1002/jobm.201500267. PMID 26377641. S2CID 25697707.
- ^ Tena, Wondwosen; Wolde-Meskel, Endalkachew; Degefu, Tulu; Walley, Fran (August 2017). "Genetic and phenotypic diversity of rhizobia nodulating chickpea ( Cicer arietinum L.) in soils from southern and central Ethiopia". Canadian Journal of Microbiology. 63 (8): 690–707. doi:10.1139/cjm-2016-0776. hdl:1807/78015. ISSN 0008-4166. PMID 28499096.
- ^ Rouhrazi, Kiomars; Khodakaramian, Gholam (December 2015). "Phenotypic and genotypic diversity of root-nodulating bacteria isolated from chickpea (Cicer arietinum L.) in Iran". Annals of Microbiology. 65 (4): 2219–2227. doi:10.1007/s13213-015-1062-9. ISSN 1590-4261. S2CID 16074998.
- ^ Alexandre, Ana; Brígido, Clarisse; Laranjo, Marta; Rodrigues, Sérgio; Oliveira, Solange (November 2009). "Survey of Chickpea Rhizobia Diversity in Portugal Reveals the Predominance of Species Distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum". Microbial Ecology. 58 (4): 930–941. doi:10.1007/s00248-009-9536-6. hdl:10174/2102. ISSN 0095-3628. PMID 19468700. S2CID 39363767.
- ^ Laranjo, Marta; Machado, Jorge; Young, J.Peter W.; Oliveira, Solange (April 2004). "High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region". FEMS Microbiology Ecology. 48 (1): 101–107. doi:10.1016/j.femsec.2003.12.015. PMID 19712435.
External links
edit