Minimal subtraction scheme

In quantum field theory, the minimal subtraction scheme, or MS scheme, is a particular renormalization scheme used to absorb the infinities that arise in perturbative calculations beyond leading order, introduced independently by Gerard 't Hooft and Steven Weinberg in 1973.[1][2] The MS scheme consists of absorbing only the divergent part of the radiative corrections into the counterterms.

In the similar and more widely used modified minimal subtraction, or MS-bar scheme (), one absorbs the divergent part plus a universal constant that always arises along with the divergence in Feynman diagram calculations into the counterterms. When using dimensional regularization, i.e. , it is implemented by rescaling the renormalization scale: , with the Euler–Mascheroni constant.

References

edit
  1. ^ 't Hooft, G. (1973). "Dimensional regularization and the renormalization group" (PDF). Nuclear Physics B. 61: 455–468. Bibcode:1973NuPhB..61..455T. doi:10.1016/0550-3213(73)90376-3.
  2. ^ Weinberg, S. (1973). "New Approach to the Renormalization Group". Physical Review D. 8 (10): 3497–3509. Bibcode:1973PhRvD...8.3497W. doi:10.1103/PhysRevD.8.3497.

Other

edit