In mathematics, the multiple orthogonal polynomials (MOPs) are orthogonal polynomials in one variable that are orthogonal with respect to a finite family of measures. The polynomials are divided into two classes named type 1 and type 2.[1]
In the literature, MOPs are also called -orthogonal polynomials, Hermite-Padé polynomials or polyorthogonal polynomials. MOPs should not be confused with multivariate orthogonal polynomials.
Multiple orthogonal polynomials
editConsider a multiindex and positive measures over the reals. As usual .
MOP of type 1
editPolynomials for are of type 1 if the -th polynomial has at most degree such that
and
Explanation
editThis defines a system of equations for the coefficients of the polynomials .
MOP of type 2
editA monic polynomial is of type 2 if it has degree such that
Explanation
editIf we write out, we get the following definition
Literature
edit- Ismail, Mourad E. H. (2005). Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press. pp. 607–647. ISBN 9781107325982.
- López-Lagomasino, G. (2021). An Introduction to Multiple Orthogonal Polynomials and Hermite-Padé Approximation. In: Marcellán, F., Huertas, E.J. (eds) Orthogonal Polynomials: Current Trends and Applications. SEMA SIMAI Springer Series, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-56190-1_9
References
edit- ^ López-Lagomasino, G. (2021). An Introduction to Multiple Orthogonal Polynomials and Hermite-Padé Approximation. In: Marcellán, F., Huertas, E.J. (eds) Orthogonal Polynomials: Current Trends and Applications. SEMA SIMAI Springer Series, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-56190-1_9
- ^ a b Ismail, Mourad E. H. (2005). Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press. pp. 607–608. ISBN 9781107325982.