NGC 3862 is an elliptical galaxy located 300 million light-years away[2] in the constellation Leo.[3] Discovered by astronomer William Herschel on April 27, 1785,[4] NGC 3862 is an outlying member of the Leo Cluster.[5]

NGC 3862
SDSS image of NGC 3862. The small galaxy at the top of the image is IC 2955.
Observation data (J2000 epoch)
ConstellationLeo
Right ascension11h 45m 05.0s[1]
Declination19° 36′ 23″[1]
Redshift0.021718 ± 0.000019[1]
Heliocentric radial velocity6511 ± 6 km/s[1]
Distance304 Mly (93.3 Mpc)
Group or clusterLeo Cluster
Apparent magnitude (V)13.67[1]
Characteristics
TypeE[1]
Size~152,000 ly (46.6 kpc) (estimated)[1]
Apparent size (V)1.5 x 1.5[1]
Notable featurescontains a supermassive black hole powering a jet of plasma that is moving at 98 percent of the speed of light
Other designations
UGC 06723, PGC 036606, MCG +03-30-095, CGCG 097-127, 3C 264, 4C +19.40, PKS 1142+19[1]

The galaxy is classified as a FR I radio galaxy[6] and as a Head-tail radio galaxy.[7][8] It hosts a supermassive black hole that is blasting a jet of plasma that is moving at 98 percent of the speed of light and is one of the few jets that can be seen in visible light.[9]

One supernova has been observed in NGC 3862: SN 2023bqk (type Ia-pec, mag. 18.3).[10]

Observations made by Bridle et al. in 1981 using maps made with the VLA revealed a jet-like structure emerging from the nucleus of NGC 3862.[7] In late January 1992, the Hubble Space Telescope observed NGC 3862 with the Faint Object Spectrograph and confirmed the presence of an optical jet in the nucleus of NGC 3862.[11][3]

 
A sequence of Hubble Space Telescope images taken between 1994 and 2014 showing the jet in NGC 3862.

The optical jet, which has a measured length of 2,800 ly (860 pc), appears to expand slowly and dims in peak and integrated brightness within the interior of the apparent ring of dust.[12] Within distances of about 260–360 ly (80–110 pc), the jet appears narrow and well-collimated.[13][14] At a distance of 330 ly (100 pc) the jet starts to abruptly expand and becomes turbulent. At this distance, filaments and pronounced kinks can be observed which suggests that the jet is oscillating or evolving a helical structure.[14] After crossing the ring at a distance of around 980–1,300 ly (300–400 pc), the jet widens dramatically, changes direction, and dims more rapidly both in peak and integrated brightness and becomes more diffuse in appearance. This suggests that the jet is interacting with the dust ring and becomes less collimated.[12] However, Perlman et al. suggests that the disk and the jet occupy physically distinct regions of the galaxy and therefore are not interacting.[15]

The total amount of energy produced by the jet is estimated to be around 3.71 × 1042 ergs.[16]

Knots

edit

The jet of NGC 3862 contains four[17][15] faint knots of material designated in increasing order from the nucleus: Knot A, B, C and D.[15] The knots exhibit a structure similar to that of a string of pearls.[9]

Radio morphology

edit

NGC 3862 contains a Head-tail radio morphology[5][18][19] with two tails[20][21] that extend 520,000 ly (160 kpc).[7][18] This morphology appears to be the result of the galaxy interacting with the intracluster medium (ICM).[22]

Nucleus

edit

The central region of NGC 3862 appears host a nearly face-on disk of dust[23][24][12][25] with a diameter of 2,200 ly (675 pc).[26] However, as the jet of galaxy has been suggested to lie at angle of 50°[15][12] to Earth's line of sight, the dust disk must be puffed up[12][23] in order for the jet to have been disturbed by the disk.[12] The emission of CO in the nucleus exhibits a double-horned line profile which suggests that the dust disk is rotating. The inferred distribution of the CO is consistent with the observed dust disk and the presence of the molecular gas suggests that the gas originated from either a merger with two gas-rich galaxies a few billion years ago or from cannibalism of smaller gas-rich galaxies.[27]

Hutchings et al. proposed instead that the apparent disk represents an evacuated region cleared of dust by some nuclear related process or by the jet itself[28][23] as indicated by the color of the region inside the ring being similar to the color of the galaxy spectrum.[28] Lara et al. also suggested this as the jet appears to widen within the apparent ring which would be consistent with an explanation of a favored expansion of the jet due to the lower density medium within the evacuated region or bubble.[13]

Supermassive black hole

edit

NGC 3862 contains a supermassive black hole with an estimated mass of 4.7×108 M☉.[29][8]

The black hole is responsible for producing the jet of plasma that is moving at nearly the speed of light.[9]

Companion galaxies

edit

NGC 3862 has an elliptical[30] or a lenticular companion galaxy known as IC 2955. It lies about 72,000 ly (22 kpc) from NGC 3862.[24]

See also

edit

References

edit
  1. ^ a b c d e f g h i "NASA/IPAC Extragalactic Database". Results for NGC 3862. Retrieved 2018-09-03.
  2. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2018-09-03.
  3. ^ a b "High Energy Jet in Galaxy NGC 3862". sci.esa.int. ESA. 7 May 1992. Retrieved 26 August 2018.
  4. ^ "New General Catalog Objects: NGC 3850 – 3899". cseligman.com. Retrieved 2018-09-03.
  5. ^ a b Northover, K. J. E. (1976-11-01). "Observations of the Radio Galaxies 3C 264 and 3C 315". Monthly Notices of the Royal Astronomical Society. 177 (2): 307–317. Bibcode:1976MNRAS.177..307N. doi:10.1093/mnras/177.2.307. ISSN 0035-8711.
  6. ^ "3CRR Atlas:3C 264: Main Page". www.jb.man.ac.uk. Retrieved 2018-09-04.
  7. ^ a b c Bridle, A. H.; Vallee, J. P. (August 1981). "High-resolution radio observations of the X-ray galaxy NGC 3862 /3C 264/ in Abell 1367". The Astronomical Journal. 86: 1165–1174. doi:10.1086/112995.
  8. ^ a b Boccardi, B.; Migliori, G.; Grandi, P.; Torresi, E.; Mertens, F.; Karamanavis, V.; Angioni, R.; Vignali, C. (2019-07-01). "The TeV-emitting radio galaxy 3C 264 - VLBI kinematics and SED modeling". Astronomy & Astrophysics. 627: A89. arXiv:1905.06634. Bibcode:2019A&A...627A..89B. doi:10.1051/0004-6361/201935183. ISSN 0004-6361.
  9. ^ a b c "HubbleSite: News – Hubble Video Shows Shock Collision Inside Black Hole Jet". hubblesite.org. Retrieved 2018-09-04.
  10. ^ Transient Name Server entry for SN 2023bqk. Retrieved 25 October 2023.
  11. ^ Crane, P.; Peletier, R.; Baxter, D.; Sparks, W. B.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Deharveng, J. M. (January 1993). "Discovery of an optical synchrotron jet in 3C 264". The Astrophysical Journal. 402: L37–L40. Bibcode:1993ApJ...402L..37C. doi:10.1086/186694. ISSN 0004-637X.
  12. ^ a b c d e f Baum, Stefi A.; O'Dea, Christopher P.; Giovannini, Gabriele; Cotton, William B.; Koff, Sigrid de; Luigina Feretti; Golombek, Daniel; Lara, Lucas; Macchetto, Ferdinando D. (1997). "HST and Merlin Observations of 3C 264—A Laboratory for Jet Physics and Unified Schemes". The Astrophysical Journal. 483 (1): 178. Bibcode:1997ApJ...483..178B. doi:10.1086/304221. ISSN 0004-637X. S2CID 121711548.
  13. ^ a b Lara, L.; Giovannini, G.; Cotton, W. D.; Feretti, L.; Venturi, T. (2004-02-13). "The inner kiloparsec of the jet in 3C 264". Astronomy & Astrophysics. 415 (3): 905–913. arXiv:astro-ph/0311077. Bibcode:2004A&A...415..905L. doi:10.1051/0004-6361:20034317. ISSN 0004-6361. S2CID 15112672.
  14. ^ a b Lara, L.; Feretti, L.; Giovannini, G.; Baum, S.; Cotton, W. D.; O’Dea, C. P.; Venturi, T. (March 1, 1999). "The Radio-Optical Jet in NGC 3862 from Parsec to Subkiloparsec Scales". The Astrophysical Journal. 513 (1): 197–206. arXiv:astro-ph/9810495. Bibcode:1999ApJ...513..197L. doi:10.1086/306852. ISSN 0004-637X. S2CID 119367414.
  15. ^ a b c d Perlman, E. S.; Padgett, C. A.; Georganopoulos, M.; Worrall, D. M.; Kastner, J. H.; Franz, G.; Birkinshaw, M.; F. Dulwich; O'Dea, C. P. (2010). "A Multi-Wavelength Spectral and Polarimetric Study of the Jet of 3C 264". The Astrophysical Journal. 708 (1): 171–187. arXiv:0911.1817. Bibcode:2010ApJ...708..171P. doi:10.1088/0004-637X/708/1/171. ISSN 0004-637X. S2CID 56125038.
  16. ^ Sahakyan, N.; Baghmanyan, V.; Zargaryan, D. (June 2018). "Fermi-LAT observation of nonblazar AGNs". Astronomy & Astrophysics. 614: A6. arXiv:1801.09381. Bibcode:2018A&A...614A...6S. doi:10.1051/0004-6361/201732304. ISSN 0004-6361. S2CID 119278881.
  17. ^ Meyer, Eileen T.; Georganopoulos, Markos; Sparks, William B.; Perlman, Eric; van der Marel, Roeland P.; Anderson, Jay; Sohn, Sangmo Tony; Biretta, John; Norman, Colin (May 2015). "A kiloparsec-scale internal shock collision in the jet of a nearby radio galaxy". Nature. 521 (7553): 495–497. Bibcode:2015Natur.521..495M. doi:10.1038/nature14481. hdl:11603/19645. ISSN 0028-0836. PMID 26017450. S2CID 4451677.
  18. ^ a b Lara, L.; Cotton, W. D.; Feretti, L.; Giovannini, G.; Venturi, T.; Marcaide, J. M. (1997-01-01). "VLBI Observations of a Complete Sample of Radio Galaxies. VII. Study of the FR I Sources 3C 31, 4C 35.03, and 3C 264". The Astrophysical Journal. 474 (1): 179–187. Bibcode:1997ApJ...474..179L. doi:10.1086/303462. ISSN 0004-637X.
  19. ^ Gavazzi, G.; Perola, G. C.; Jaffe, W. (1981-11-01). "Observations of the head-tail radio galaxy NGC 3862 /3C 264/ at 0.6, 1.4, and 5.0 GHz". Astronomy and Astrophysics. 103: 35–43. Bibcode:1981A&A...103...35G. ISSN 0004-6361.
  20. ^ Baum, Stefi Alison; Heckman, Timothy M.; Bridle, Alan; van Breugel, Wil J. M.; Miley, George K. (1988-12-01). "Extended optical-line-emitting gas in radio galaxies – Broad-band optical, narrow-band optical, and radio imaging of a representative sample". The Astrophysical Journal Supplement Series. 68: 643–714. Bibcode:1988ApJS...68..643B. doi:10.1086/191301. ISSN 0067-0049.
  21. ^ Parma, P.; de Ruiter, H. R.; Cameron, R. A. (1991-12-01). "Very large array observations of radio-selected dumbbell galaxies". The Astronomical Journal. 102: 1960–1976. Bibcode:1991AJ....102.1960P. doi:10.1086/116018. ISSN 0004-6256.
  22. ^ Kharb, P.; O'Dea, C. P.; Tilak, A.; Baum, S. A.; Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K. (2012-07-01). "VLBA and Chandra Observations of Jets in FRI Radio Galaxies: Constraints on Jet Evolution". The Astrophysical Journal. 754 (1): 1. arXiv:1205.1460. Bibcode:2012ApJ...754....1K. doi:10.1088/0004-637X/754/1/1. ISSN 0004-637X. S2CID 118636901.
  23. ^ a b c Martel, André R.; Turner, Neal J.; Sparks, William B.; Baum, Stefi A. (2000). "Nuclear Gas and Dust Disks in Nearby 3CR Elliptical Galaxies". The Astrophysical Journal Supplement Series. 130 (2): 267. Bibcode:2000ApJS..130..267M. doi:10.1086/317356. ISSN 0067-0049.
  24. ^ a b Kleijn, Gijs A. Verdoes; Baum, Stefi A.; Zeeuw, P. Tim de; O'Dea, Chris P. (1999). "Hubble Space Telescope Observations of Nearby Radio-Loud Early-Type Galaxies". The Astronomical Journal. 118 (6): 2592. arXiv:astro-ph/9909256. Bibcode:1999AJ....118.2592V. doi:10.1086/301135. ISSN 1538-3881.
  25. ^ Quillen, A. C.; Almog, Jessica; Yukita, Mihoko (2003). "870 Micron Observations of Nearby 3CRR Radio Galaxies". The Astronomical Journal. 126 (6): 2677. arXiv:astro-ph/0308306. Bibcode:2003AJ....126.2677Q. doi:10.1086/379562. ISSN 1538-3881. S2CID 119358673.
  26. ^ van Bemmel, I. M.; Morganti, R.; Oosterloo, T.; van Moorsel, G. (2012-11-29). "A relation between circumnuclear H I, dust, and optical cores in low-power radio galaxies". Astronomy & Astrophysics. 548: A93. arXiv:1211.0859. Bibcode:2012A&A...548A..93V. doi:10.1051/0004-6361/201219179. ISSN 0004-6361. S2CID 119279384.
  27. ^ Lim, Jeremy; Leon, Stephane; Combes, Françoise; Dinh-V-Trung (2000). "Molecular Gas in the Powerful Radio Galaxies 3C 31 and 3C 264: Major or Minor Mergers?". The Astrophysical Journal Letters. 545 (2): L93. arXiv:astro-ph/0011520. Bibcode:2000ApJ...545L..93L. doi:10.1086/317885. ISSN 1538-4357. S2CID 119081169.
  28. ^ a b Hutchings, J. B.; Baum, S. A.; Weistrop, D.; Nelson, C.; Kaiser, M. E.; Gelderman, R. F. (1998). "Spatially Resolved Spectra of 3C Galaxy Nuclei". The Astronomical Journal. 116 (2): 634. arXiv:astro-ph/9805177. Bibcode:1998AJ....116..634H. doi:10.1086/300474. ISSN 1538-3881. S2CID 119106358.
  29. ^ Le, Truong; Newman, William; Edge, Brinkley (2018-03-10). "Jet launching radius in low-power radio-loud AGNs in advection-dominated accretion flows". Monthly Notices of the Royal Astronomical Society. 477 (2): 1803–1813. arXiv:1803.03860. Bibcode:2018MNRAS.477.1803L. doi:10.1093/mnras/sty644. ISSN 0035-8711. S2CID 59501170.
  30. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2018-10-12.
edit