In number theory, the n conjecture is a conjecture stated by Browkin & Brzeziński (1994) as a generalization of the abc conjecture to more than three integers.

Formulations

edit

Given  , let   satisfy three conditions:

(i)  
(ii)  
(iii) no proper subsum of   equals  

First formulation

The n conjecture states that for every  , there is a constant   depending on   and  , such that:

 

where   denotes the radical of an integer  , defined as the product of the distinct prime factors of  .

Second formulation

Define the quality of   as

 

The n conjecture states that  .

Stronger form

edit

Vojta (1998) proposed a stronger variant of the n conjecture, where setwise coprimeness of   is replaced by pairwise coprimeness of  .

There are two different formulations of this strong n conjecture.

Given  , let   satisfy three conditions:

(i)   are pairwise coprime
(ii)  
(iii) no proper subsum of   equals  

First formulation

The strong n conjecture states that for every  , there is a constant   depending on   and  , such that:

 

Second formulation

Define the quality of   as

 

The strong n conjecture states that  .

References

edit
  • Browkin, Jerzy; Brzeziński, Juliusz (1994). "Some remarks on the abc-conjecture". Math. Comp. 62 (206): 931–939. Bibcode:1994MaCom..62..931B. doi:10.2307/2153551. JSTOR 2153551.
  • Vojta, Paul (1998). "A more general abc conjecture". International Mathematics Research Notices. 1998 (21): 1103–1116. arXiv:math/9806171. doi:10.1155/S1073792898000658. MR 1663215.