Nanosensors Inc. is a company that manufactures probes for use in atomic force microscopes (AFM) and scanning probe microscopes (SPM). This private, for profit company was founded November 21, 2018. Nanosensors Inc. is located in Neuchatel, Switzerland.

Nanosensors
Product typeNanotechnology
AFM probes
AFM tips
AFM cantilevers
OwnerNanoWorld
Introduced1993
MarketsWorldwide
TaglineThe World Leader in Scanning Probes
Websitewww.nanosensors.com

History

edit

Nanosensors was founded as "Nanoprobe" in 1990,[1] building on research conducted at IBM Sindelfingen on fundamental technologies required for the batch processing of silicon AFM probes using bulk micromachining.

In 1993, Nanosensors commercialized SPM and AFM probes worldwide. Their developments in batch processing technologies for producing AFM probes contributed to introducing Atomic Force Microscopes into the industry of the time. In recognition of this achievement, Nanosensors discerned the Dr.-Rudolf-Eberle Innovation Award of the German State of Baden-Württemberg[2] and the Innovation Prize of the German Industry [3] in 1995 and the Innovation Award of the Förderkreis für die Mikroelektronik e.V.[4] in 1999.

In 2002, Nanosensors was acquired by and integrated into Switzerland-based NanoWorld. It is still an independent business unit.

Significance

edit

Researchers have developed an array of operating modes and methods for Scanning probe microscopy and Atomic Force Microscopy. The use and application of such methods requires SPM or AFM instruments equipped with method-specific SPM or AFM probes. Nanosensors supplies SPM or AFM users worldwide with a range of such method-specific SPM or AFM probes.[5]

Products

edit

AFM Probe Series

edit

PointProbePlus

edit

The PointProbePlus series is directly based on the technology originally developed and commercialized by Nanosensors in 1993. The original PointProbe technology has been upgraded to the PointProbePlus technology in 2004 yielding a reduced variation of tip shape and increased reproducibility of images. It is manufactured from highly doped mono-crystalline silicon. The tip is pointing into the <100> crystal direction.

  • PointProbePlus XY-Alignment Series & Alignment Chip
  • PointProbePlus Silicon MFM Probe Series[6][7]
  • SuperSharpSilicon[8][9]
  • High Aspect Ratio AFM probes[10]

AdvancedTEC

edit

The tip of the AdvancedTEC AFM probe series[11] protrudes from the end of the cantilever and is visible through the optical system of the atomic force microscope. This visibility from the top allows the operator of the microscope to position the tip of this AFM probe at the point of interest.

Applications

edit

Accessories

edit
  • Transfer Standards
  • Calibration standards[28]
  • Alignment Chip[29]

References

edit
  1. ^ "The History of NANOSENSORS™ - R&D Leaders in AFM Probes Since 1990". www.nanosensors.com. Retrieved 2023-04-26.
  2. ^ Dr.-Rudolf-Eberle-Preis – Innovationspreis des Landes Baden Württemberg, Auszeichungen, Preisträger 1995
  3. ^ Innovationspreis der deutschen Wirtschaft, Erster Innovationspreis der Welt, Preisträger der Vorjahre, 1995
  4. ^ Annual Innovation Award of the Förderkreis Mikroelektronik, Industrie- und Handelskammer Nürnberg für Mittelfranken
  5. ^ Stevens, R. M. (2009). "New carbon nanotube AFM probe technology". Materials Today. 12 (10): 42–86. doi:10.1016/S1369-7021(09)70276-7.
  6. ^ Scott, J.; McVitie, S.; Ferrier, R. P.; Gallagher, A. (2001). "Electrostatic charging artefacts in Lorentz electron tomography of MFM tip stray fields" (PDF). Journal of Physics D: Applied Physics. 34 (9): 1326. Bibcode:2001JPhD...34.1326S. doi:10.1088/0022-3727/34/9/307.
  7. ^ Pulwey, R.; Rahm, M.; Biberger, J.; Weiss, D. (2001). "Switching behavior of vortex structures in nanodisks". IEEE Transactions on Magnetics. 37 (4): 2076. Bibcode:2001ITM....37.2076P. doi:10.1109/20.951058.
  8. ^ Xiaohui Tang; Bayot, V.; Reckinger, N.; Flandre, D.; Raskin, J. -P.; Dubois, E.; Nysten, B. (2009). "A Simple Method for Measuring Si-Fin Sidewall Roughness by AFM". IEEE Transactions on Nanotechnology. 8 (5): 611. Bibcode:2009ITNan...8..611T. doi:10.1109/TNANO.2009.2021064. S2CID 22152956.
  9. ^ Sobchenko, I.; Pesicka, J.; Baither, D.; Stracke, W.; Pretorius, T.; Chi, L.; Reichelt, R.; Nembach, E. (2007). "Atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) of nanoscale plate-shaped second phase particles" (PDF). Philosophical Magazine. 87 (17): 2427. Bibcode:2007PMag...87.2427S. doi:10.1080/14786430701203184. S2CID 137216435.
  10. ^ Juang, B. J.; Huang, K. Y.; Liao, H. S.; Leong, K. C.; Hwang, I. S. (2010). "AFM pickup head with holographic optical element (HOE)". 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. p. 442. doi:10.1109/AIM.2010.5695758. ISBN 978-1-4244-8031-9. S2CID 17204425.
  11. ^ Bolopion, A.; Hui Xie; Haliyo, D. S.; Regnier, S. (2010). "3D haptic handling of microspheres". 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (PDF). p. 6131. doi:10.1109/IROS.2010.5650443. ISBN 978-1-4244-6674-0. S2CID 14197333.
  12. ^ Trumper, D. L.; Hocken, R. J.; Amin-Shahidi, D.; Ljubicic, D.; Overcash, J. (2011). "High-Accuracy Atomic Force Microscope". Control Technologies for Emerging Micro and Nanoscale Systems. Lecture Notes in Control and Information Sciences. Vol. 413. p. 17. doi:10.1007/978-3-642-22173-6_2. ISBN 978-3-642-22172-9.
  13. ^ Nemesincze, P.; Osvath, Z.; Kamaras, K.; Biro, L. (2008). "Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy". Carbon. 46 (11): 1435. arXiv:0812.0690. Bibcode:2008Carbo..46.1435N. doi:10.1016/j.carbon.2008.06.022. S2CID 15528877.
  14. ^ Haugstad, G.; Jones, R. R. (1999). "Mechanisms of dynamic force microscopy on polyvinyl alcohol: Region-specific non-contact and intermittent contact regimes". Ultramicroscopy. 76 (1–2): 77–86. doi:10.1016/S0304-3991(98)00073-4.
  15. ^ Deleu, M. (2001). "Imaging mixed lipid monolayers by dynamic atomic force microscopy". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1513 (1): 55–62. doi:10.1016/S0005-2736(01)00337-6. PMID 11427194.
  16. ^ Kimura, K.; Kobayashi, K.; Yamada, H.; Horiuchi, T.; Ishida, K.; Matsushige, K. (2004). "Orientation control of ferroelectric polymer molecules using contact-mode AFM". European Polymer Journal. 40 (5): 933. Bibcode:2004EurPJ..40..933K. doi:10.1016/j.eurpolymj.2004.01.015.
  17. ^ Diesinger, H.; Deresmes, D.; Nys, J. -P.; Mélin, T. (2010). "Dynamic behavior of amplitude detection Kelvin force microscopy in ultrahigh vacuum". Ultramicroscopy. 110 (2): 162–169. doi:10.1016/j.ultramic.2009.10.016. PMID 19939564.
  18. ^ Luan, L.; Auslaender, O.; Bonn, D.; Liang, R.; Hardy, W.; Moler, K. (2009). "Magnetic force microscopy study of interlayer kinks in individual vortices in the underdoped cuprate superconductor YBa2Cu3O6+x". Physical Review B. 79 (21): 214530. arXiv:0811.0584. Bibcode:2009PhRvB..79u4530L. doi:10.1103/PhysRevB.79.214530. S2CID 51760640.
  19. ^ Nazaretski, E.; Thibodaux, J. P.; Vekhter, I.; Civale, L.; Thompson, J. D.; Movshovich, R. (2009). "Direct measurements of the penetration depth in a superconducting film using magnetic force microscopy". Applied Physics Letters. 95 (26): 262502. arXiv:0909.1360. Bibcode:2009ApPhL..95z2502N. doi:10.1063/1.3276563. S2CID 119111208.
  20. ^ Lantz, M. A.; o’Shea, S. J.; Hoole, A. C. F.; Welland, M. E. (1997). "Lateral stiffness of the tip and tip-sample contact in frictional force microscopy". Applied Physics Letters. 70 (8): 970. Bibcode:1997ApPhL..70..970L. doi:10.1063/1.118476.
  21. ^ Fraxedas, J.; Garcia-Manyes, S.; Gorostiza, P.; Sanz, F. (2002). "Nanoindentation: Toward the sensing of atomic interactions". Proceedings of the National Academy of Sciences. 99 (8): 5228–32. Bibcode:2002PNAS...99.5228F. doi:10.1073/pnas.042106699. PMC 122751. PMID 16578871.
  22. ^ Terán Arce, P. F. M.; Riera, G. A.; Gorostiza, P.; Sanz, F. (2000). "Atomic-layer expulsion in nanoindentations on an ionic single crystal". Applied Physics Letters. 77 (6): 839. Bibcode:2000ApPhL..77..839T. doi:10.1063/1.1306909.
  23. ^ Stucklin, S.; Gullo, M. R.; Akiyama, T.; Scheidiger, M. (2008). "Atomic force microscopy for industry with the Akiyama-Probe sensor". 2008 International Conference on Nanoscience and Nanotechnology. p. 79. doi:10.1109/ICONN.2008.4639250. ISBN 978-1-4244-1503-8. S2CID 23372086.
  24. ^ Obrebski, J.W. (2010), Development of an Atomic Force Microscope (Master thesis)
  25. ^ Guo, T.; Wang, S.; Dorantes-Gonzalez, D. J.; Chen, J.; Fu, X.; Hu, X. (2011). "Development of a Hybrid Atomic Force Microscopic Measurement System Combined with White Light Scanning Interferometry". Sensors. 12 (1): 175–188. Bibcode:2011Senso..12..175G. doi:10.3390/s120100175. PMC 3279207. PMID 22368463.
  26. ^ Holbery, J. D.; Eden, V. L.; Sarikaya, M.; Fisher, R. M. (2000). "Experimental determination of scanning probe microscope cantilever spring constants utilizing a nanoindentation apparatus". Review of Scientific Instruments. 71 (10): 3769. Bibcode:2000RScI...71.3769H. doi:10.1063/1.1289509.
  27. ^ Boukallel, M.; Girot, M.; Regnier, S. (2008). "A robotic platform for targeted studies on biological cells". 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. p. 624. doi:10.1109/BIOROB.2008.4762926. ISBN 978-1-4244-2882-3. S2CID 14751744.
  28. ^ Korpelainen, V.; Lassila, A. (2007). "Calibration of a commercial AFM: Traceability for a coordinate system". Measurement Science and Technology. 18 (2): 395. Bibcode:2007MeScT..18..395K. doi:10.1088/0957-0233/18/2/S11.
  29. ^ Hwu, E. T.; Hung, S. K.; Yang, C. W.; Huang, K. Y.; Hwang, I. S. (2008). "Real-time detection of linear and angular displacements with a modified DVD optical head". Nanotechnology. 19 (11): 115501. Bibcode:2008Nanot..19k5501H. doi:10.1088/0957-4484/19/11/115501. PMID 21730551.
edit