In network science, the network entropy is a disorder measure derived from information theory to describe the level of randomness and the amount of information encoded in a graph.[1] It is a relevant metric to quantitatively characterize real complex networks and can also be used to quantify network complexity[1][2]

Formulations

edit

According to a 2018 publication by Zenil et al. there are several formulations by which to calculate network entropy and, as a rule, they all require a particular property of the graph to be focused, such as the adjacency matrix, degree sequence, degree distribution or number of bifurcations, what might lead to values of entropy that aren't invariant to the chosen network description.[3]

Degree Distribution Shannon Entropy

edit

The Shannon entropy can be measured for the network degree probability distribution as an average measurement of the heterogeneity of the network.

 

This formulation has limited use with regards to complexity, information content, causation and temporal information. Be that as it may, algorithmic complexity has the ability to characterize any general or universal property of a graph or network and it is proven that graphs with low entropy have low algorithmic complexity because the statistical regularities found in a graph are useful for computer programs to recreate it. The same cannot be said for high entropy networks though, as these might have any value for algorithmic complexity.[3]

Random Walker Shannon Entropy

edit

Due to the limits of the previous formulation, it is possible to take a different approach while keeping the usage of the original Shannon Entropy equation.

Consider a random walker that travels around the graph, going from a node   to any node   adjacent to   with equal probability. The probability distribution   that describes the behavior of this random walker would thus be

 ,

where   is the graph adjacency matrix and   is the node   degree.

From that, the Shannon entropy from each node   can be defined as

 

and, since  , the normalized node entropy   is calculated

 

This leads to a normalized network entropy  , calculated by averaging the normalized node entropy over the whole network:[4]

 

The normalized network entropy is maximal   when the network is fully connected and decreases the sparser the network becomes  . Notice that isolated nodes   do not have its probability   defined and, therefore, are not considered when measuring the network entropy. This formulation of network entropy has low sensitivity to hubs due to the logarithmic factor and is more meaningful for weighted networks.,[4] what ultimately makes it hard to differentiate scale-free networks using this measure alone.[2]

Random Walker Kolmogorov–Sinai Entropy

edit

The limitations of the random walker Shannon entropy can be overcome by adapting it to use a Kolmogorov–Sinai entropy. In this context, network entropy is the entropy of a stochastic matrix associated with the graph adjacency matrix   and the random walker Shannon entropy is called the dynamic entropy of the network. From that, let   be the dominant eigenvalue of  . It is proven that   satisfies a variational principal[5] that is equivalent to the dynamic entropy for unweighted networks, i.e., the adjacency matrix consists exclusively of boolean values. Therefore, the topological entropy is defined as

 

This formulation is important to the study of network robustness, i.e., the capacity of the network to withstand random structural changes. Robustness is actually difficult to be measured numerically whereas the entropy can be easily calculated for any network, which is especially important in the context of non-stationary networks. The entropic fluctuation theorem shows that this entropy is positively correlated to robustness and hence a greater insensitivity of an observable to dynamic or structural perturbations of the network. Moreover, the eigenvalues are inherently related to the multiplicity of internal pathways, leading to a negative correlation between the topological entropy and the shortest average path length.[6]

Other than that, the Kolmogorov entropy is related to the Ricci curvature of the network,[7] a metric that has been used to differentiate stages of cancer from gene co-expression networks,[8] as well as to give hallmarks of financial crashes from stock correlation networks[9]

Von Neumann entropy

edit

Von Neumann entropy is the extension of the classical Gibbs entropy in a quantum context. This entropy is constructed from a density matrix  : historically, the first proposed candidate for such a density matrix has been an expression of the Laplacian matrix L associated with the network. The average von Neumann entropy of an ensemble is calculated as:[10]

 

For random network ensemble  , the relation between   and   is nonmonotonic when the average connectivity   is varied.

For canonical power-law network ensembles, the two entropies are linearly related.[11]

 

Networks with given expected degree sequences suggest that, heterogeneity in the expected degree distribution implies an equivalence between a quantum and a classical description of networks, which respectively corresponds to the von Neumann and the Shannon entropy.[12]

This definition of the Von Neumann entropy can also be extended to multilayer networks with tensorial approach[13] and has been used successfully to reduce their dimensionality from a structural point of perspective.[14]

However, it has been shown that this definition of entropy does not satisfy the property of sub-additivity (see Von Neumann entropy's subadditivity), expected to hold theoretically. A more grounded definition, satisfying this fundamental property, has been introduced by Manlio De Domenico and Biamonte[15] as a quantum-like Gibbs state

 

where   is a normalizing factor which plays the role of the partition function, and   is a tunable parameter which allows multi-resolution analysis. If   is interpreted as a temporal parameter, this density matrix is formally proportional to the propagator of a diffusive process on the top of the network.

This feature has been used to build a statistical field theory of complex information dynamics, where the density matrix can be interpreted in terms of the super-position of streams operators whose action is to activate information flows among nodes.[16] The framework has been successfully applied to analyze the protein-protein interaction networks of virus-human interactomes, including the SARS-CoV-2, to unravel the systemic features of infection of the latter at microscopic, mesoscopic and macroscopic scales,[17] as well as to assess the importance of nodes for integrating information flows within the network and the role they play in network robustness.[18]

This approach has been generalized to deal with other types of dynamics, such as random walks, on the top of multilayer networks, providing an effective way to reduce the dimensionality of such systems without altering their structure.[19] Using both classical and maximum-entropy random walks, the corresponding density matrices have been used to encode the network states of the human brain and to assess, at multiple scales, connectome’s information capacity at different stages of dementia.[20]

Maximum Entropy Principle

edit

The maximum entropy principle is a variational principal stating that the probability distribution best representing the current state of a system is the one which maximizes the Shannon entropy.[21] This concept can be used to generate an ensemble of random graphs with given structural properties derived from the maximum entropy approach which, in its turn, describes the most probable network configuration: the maximum entropy principle allows for maximally unbiased information when lacking complete knowledge (microscopic configuration is not accessible, e.g.: we don't know the adjacency matrix). On the other hand, this ensemble serves as a null model when the actual microscopic configuration of the network is known, allowing to assess the significance of empirical patterns found in the network[22]

Network Ensembles

edit

It is possible to extend the network entropy formulations to instead measure the ensemble entropy. A set of networks that satisfies given structural characteristics can be treated as a network ensemble.[23] Brought up by Ginestra Bianconi in 2007, the entropy of a network ensemble measures the level of the order or uncertainty of a network ensemble.[24]

The entropy is the logarithm of the number of graphs.[25] Entropy can also be defined in one network. Basin entropy is the logarithm of the attractors in one Boolean network.[26]

Employing approaches from statistical mechanics, the complexity, uncertainty, and randomness of networks can be described by network ensembles with different types of constraints.[27]

Gibbs and Shannon entropy

edit

By analogy to statistical mechanics, microcanonical ensembles and canonical ensembles of networks are introduced for the implementation. A partition function Z of an ensemble can be defined as:  

where   is the constraint, and   ( ) are the elements in the adjacency matrix,   if and only if there is a link between node i and node j.   is a step function with   if  , and   if  . The auxiliary fields   and   have been introduced as analogy to the bath in classical mechanics.

For simple undirected networks, the partition function can be simplified as[11]

 

where  ,   is the index of the weight, and for a simple network  .

Microcanonical ensembles and canonical ensembles are demonstrated with simple undirected networks.

For a microcanonical ensemble, the Gibbs entropy   is defined by:

 

where   indicates the cardinality of the ensemble, i.e., the total number of networks in the ensemble.

The probability of having a link between nodes i and j, with weight   is given by:

 

For a canonical ensemble, the entropy is presented in the form of a Shannon entropy:

 

Relation between Gibbs and Shannon entropy

edit

Network ensemble   with given number of nodes   and links  , and its conjugate-canonical ensemble   are characterized as microcanonical and canonical ensembles and they have Gibbs entropy   and the Shannon entropy S, respectively. The Gibbs entropy in the   ensemble is given by:[28]

 

For   ensemble,

 

Inserting   into the Shannon entropy:[11]

 

The relation indicates that the Gibbs entropy   and the Shannon entropy per node S/N of random graphs are equal in the thermodynamic limit  .

See also

edit

References

edit
  1. ^ a b Anand, Kartik; Krioukov, Dmitri; Bianconi, Ginestra (2014). "Entropy distribution and condensation in random networks with a given degree distribution". Physical Review E. 89 (6): 062807. arXiv:1403.5884. Bibcode:2014PhRvE..89f2807A. doi:10.1103/PhysRevE.89.062807. PMID 25019833. S2CID 761765.
  2. ^ a b Freitas, Cristopher GS; Aquino, Andre LL; Ramos, Heitor S; Frery, Alejandro C; Rosso, Osvaldo A (2019). "A detailed characterization of complex networks using Information Theory". Scientific Reports. 9 (1): 16689. Bibcode:2019NatSR...916689F. doi:10.1038/s41598-019-53167-5. PMC 6853913. PMID 31723172. S2CID 207987035.
  3. ^ a b Zenil, Hector; Kiani, Narsis A; Tegnér, Jesper (2018). "A review of graph and network complexity from an algorithmic information perspective". Entropy. 20 (8): 551. Bibcode:2018Entrp..20..551Z. doi:10.3390/e20080551. PMC 7513075. PMID 33265640.
  4. ^ a b Small, Michael (2013). "Complex networks from time series: Capturing dynamics". 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013). pp. 2509–2512. doi:10.1109/ISCAS.2013.6572389. ISBN 978-1-4673-5762-3. S2CID 9275909.
  5. ^ Arnold, Ludwig; Gundlach, Volker Matthias; Demetrius, Lloyd (1994). "Evolutionary formalism for products of positive random matrices". The Annals of Applied Probability. 4 (3): 859–901. doi:10.1214/aoap/1177004975. JSTOR 2245067.
  6. ^ Demetrius, Lloyd; Manke, Thomas (2005). "Robustness and network evolution—an entropic principle". Physica A: Statistical Mechanics and Its Applications. 346 (3): 682–696. Bibcode:2005PhyA..346..682D. doi:10.1016/j.physa.2004.07.011.
  7. ^ Lott, J.; Villani, C. (2009). "Ricci curvature for metric-measure spaces via optimal transport". Annals of Mathematics. 169 (3): 903–991. arXiv:math/0412127. doi:10.4007/annals.2009.169.903. S2CID 15556613.
  8. ^ Sandhu, R.; Georgiou, T.; Reznik, E.; Zhu, L.; Kolesov, I.; Senbabaoglu, Y.; Tannenbaum, A. (2015). "Graph curvature for differentiating cancer networks". Scientific Reports. 5: 12323. Bibcode:2015NatSR...512323S. doi:10.1038/srep12323. PMC 4500997. PMID 26169480.
  9. ^ Sandhu, Romeil S; Georgiou, Tryphon T; Tannenbaum, Allen R (2016). "Ricci curvature: An economic indicator for market fragility and systemic risk". Science Advances. 2 (5): e1501495. Bibcode:2016SciA....2E1495S. doi:10.1126/sciadv.1501495. PMC 4928924. PMID 27386522.
  10. ^ Du, Wenxue; Li, Xueliang; Li, Yiyang; Severini, Simone (30 December 2010). "A note on the von Neumann entropy of random graphs". Linear Algebra and Its Applications. 433 (11): 1722–1725. doi:10.1016/j.laa.2010.06.040. ISSN 0024-3795.
  11. ^ a b c Anand, Kartik; Bianconi, Ginestra (13 October 2009). "Entropy measures for networks: Toward an information theory of complex topologies". Physical Review E. 80 (4): 045102. arXiv:0907.1514. Bibcode:2009PhRvE..80d5102A. doi:10.1103/PhysRevE.80.045102. PMID 19905379. S2CID 27419558.
  12. ^ Anand, Kartik; Bianconi, Ginestra; Severini, Simone (18 March 2011). "Shannon and von Neumann entropy of random networks with heterogeneous expected degree". Physical Review E. 83 (3): 036109. arXiv:1011.1565. Bibcode:2011PhRvE..83c6109A. doi:10.1103/PhysRevE.83.036109. PMID 21517560. S2CID 1482301.
  13. ^ De Domenico, Manlio; Solé-Ribalta, Albert; Cozzo, Emanuele; Kivelä, Mikko; Moreno, Yamir; Porter, Mason A.; Gómez, Sergio; Arenas, Alex (4 December 2013). "Mathematical Formulation of Multilayer Networks". Physical Review X. 3 (4): 041022. arXiv:1307.4977. Bibcode:2013PhRvX...3d1022D. doi:10.1103/PhysRevX.3.041022. S2CID 16611157.
  14. ^ De Domenico, Manlio; Nicosia, Vincenzo; Arenas, Alex; Latora, Vito (23 April 2015). "Structural reducibility of multilayer networks" (PDF). Nature Communications. 6: 6864. Bibcode:2015NatCo...6.6864D. doi:10.1038/ncomms7864. PMID 25904309. S2CID 16776349.
  15. ^ De Domenico, Manlio; Biamonte, Jacob (21 December 2016). "Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison". Physical Review X. 6 (4): 041062. arXiv:1609.01214. Bibcode:2016PhRvX...6d1062D. doi:10.1103/PhysRevX.6.041062. S2CID 51786781.
  16. ^ Ghavasieh, Arsham; Nicolini, Carlo; De Domenico, Manlio (10 November 2020). "Statistical physics of complex information dynamics". Physical Review E. 102 (5): 052304. arXiv:2010.04014. Bibcode:2020PhRvE.102e2304G. doi:10.1103/PhysRevE.102.052304. PMID 33327131. S2CID 222208856.
  17. ^ Ghavasieh, Arsham; Bontorin, Sebastiano; Artime, Oriol; Verstraete, Nina; De Domenico, Manlio (23 April 2021). "Multiscale statistical physics of the pan-viral interactome unravels the systemic nature of SARS-CoV-2 infections". Communications Physics. 4 (1): 83. arXiv:2008.09649. Bibcode:2021CmPhy...4...83G. doi:10.1038/s42005-021-00582-8.
  18. ^ Ghavasieh, Arsham; Stella, Massimo; Biamonte, Jacob; De Domenico, Manlio (10 June 2021). "Unraveling the effects of multiscale network entanglement on empirical systems". Communications Physics. 4 (1): 129. arXiv:2008.05368. Bibcode:2021CmPhy...4..129G. doi:10.1038/s42005-021-00633-0. S2CID 221104066.
  19. ^ Ghavasieh, Arsham; De Domenico, Manlio (13 February 2020). "Enhancing transport properties in interconnected systems without altering their structure". Physical Review Research. 2 (1): 13–15. arXiv:2001.04450. Bibcode:2020PhRvR...2a3155G. doi:10.1103/PhysRevResearch.2.013155. S2CID 210165034.
  20. ^ Benigni, Barbara; Ghavasieh, Arsham; Corso, Alessandra; D'Andrea, Valeria; De Domenico, Manlio (22 June 2021). "Persistence of information flow: a multiscale characterization of human brain". Network Neuroscience. 5 (3): 831–850. doi:10.1162/netn_a_00203. PMC 8567833. PMID 34746629.
  21. ^ Jaynes, E. T. (1957). "Information Theory and Statistical Mechanics" (PDF). Physical Review. Series II. 106 (4): 620–630. Bibcode:1957PhRv..106..620J. doi:10.1103/PhysRev.106.620. MR 0087305. S2CID 17870175.
  22. ^ Cimini, Giulio; Squartini, Tiziano; Saracco, Fabio; Garlaschelli, Diego; Gabrielli, Andrea; Caldarelli, Guido (2019). "The statistical physics of real-world networks". Nature Reviews Physics. 1 (1): 58–71. arXiv:1810.05095. Bibcode:2019NatRP...1...58C. doi:10.1038/s42254-018-0002-6. S2CID 52963395.
  23. ^ Levin, E.; Tishby, N.; Solla, S.A. (October 1990). "A statistical approach to learning and generalization in layered neural networks". Proceedings of the IEEE. 78 (10): 1568–1574. doi:10.1109/5.58339. ISSN 1558-2256. S2CID 5254307.
  24. ^ Bianconi, Ginestra (2008). "The entropy of randomized network ensembles". EPL (Europhysics Letters). 81 (2): 28005. arXiv:0708.0153. Bibcode:2008EL.....8128005B. doi:10.1209/0295-5075/81/28005. ISSN 0295-5075. S2CID 17269886.
  25. ^ Menichetti, Giulia; Remondini, Daniel (2014). "Entropy of a network ensemble: definitions and applications to genomic data". Theoretical Biology Forum. 107 (1–2): 77–87. ISSN 0035-6050. PMID 25936214.
  26. ^ Krawitz, Peter; Shmulevich, Ilya (27 September 2007). "Entropy of complex relevant components of Boolean networks". Physical Review E. 76 (3): 036115. arXiv:0708.1538. Bibcode:2007PhRvE..76c6115K. doi:10.1103/PhysRevE.76.036115. PMID 17930314. S2CID 6192682.
  27. ^ Bianconi, Ginestra (27 March 2009). "Entropy of network ensembles". Physical Review E. 79 (3): 036114. arXiv:0802.2888. Bibcode:2009PhRvE..79c6114B. doi:10.1103/PhysRevE.79.036114. PMID 19392025. S2CID 26082469.
  28. ^ Bogacz, Leszek; Burda, Zdzisław; Wacław, Bartłomiej (1 July 2006). "Homogeneous complex networks". Physica A: Statistical Mechanics and Its Applications. 366: 587–607. arXiv:cond-mat/0502124. Bibcode:2006PhyA..366..587B. doi:10.1016/j.physa.2005.10.024. ISSN 0378-4371. S2CID 119428248.