Non-linear phononics is the physics in solids created or triggered by large amplitude oscillations of phonons,[1] the elementary vibration of the crystal lattice.[2][3][4] It is an extension of the field of phononics,[5] which studies the regime of small harmonic vibrations and related phenomena in materials. In contrast to phononics, however, large amplitudes oscillation reveal the anharmonicity of the crystal lattice, which theoretical treatment[6] requires the incorporation of higher order terms within the crystal potential.[citation needed]

References

edit
  1. ^ Först, M.; Manzoni, C.; Kaiser, S.; Tomioka, Y.; Tokura, Y.; Merlin, R.; Cavalleri, A. (7 August 2011). "Nonlinear phononics as an ultrafast route to lattice control". Nature Physics. 7 (11): 854–856. arXiv:1101.1878. Bibcode:2011NatPh...7..854F. doi:10.1038/nphys2055.
  2. ^ von Hoegen, A; Mankowsky, R; Fechner, M; Först, M; Cavalleri, A (1 March 2018). "Probing the interatomic potential of solids with strong-field nonlinear phononics". Nature. 555 (7694): 79–82. arXiv:1708.07659. Bibcode:2018Natur.555...79V. doi:10.1038/nature25484. PMID 29466328.
  3. ^ Eggleton, Benjamin J. (2016). "Nonlinear optical phononics: Harnessing light-sound interactions in nanoscale integrated circuits". 2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). pp. 1–2. doi:10.1109/NUSOD.2016.7546892. ISBN 978-1-4673-8603-6.
  4. ^ Först, M.; Mankowsky, R.; Bromberger, H.; Fritz, D.M.; Lemke, H.; Zhu, D.; Chollet, M.; Tomioka, Y.; Tokura, Y.; Merlin, R.; Hill, J.P.; Johnson, S.L.; Cavalleri, A. (September 2013). "Displacive lattice excitation through nonlinear phononics viewed by femtosecond X-ray diffraction". Solid State Communications. 169: 24–27. Bibcode:2013SSCom.169...24F. doi:10.1016/j.ssc.2013.06.024.
  5. ^ VanGessel, Francis; Peng, Jie; Chung, Peter W. (31 October 2017). "A review of computational phononics: the bulk, interfaces, and surfaces". Journal of Materials Science. 53 (8): 5641–5683. doi:10.1007/s10853-017-1728-8.
  6. ^ Subedi, Alaska; Cavalleri, Andrea; Georges, Antoine (11 June 2014). "Theory of nonlinear phononics for coherent light control of solids". Physical Review B. 89 (22): 220301. arXiv:1311.0544. Bibcode:2014PhRvB..89v0301S. doi:10.1103/PhysRevB.89.220301.