Oblate spheroidal coordinates

Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius in the x-y plane. (Rotation about the other axis produces prolate spheroidal coordinates.) Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.

Figure 1: Coordinate isosurfaces for a point P (shown as a black sphere) in oblate spheroidal coordinates (μ, ν, φ). The z-axis is vertical, and the foci are at ±2. The red oblate spheroid (flattened sphere) corresponds to μ = 1, whereas the blue half-hyperboloid corresponds to ν = 45°. The azimuth φ = −60° measures the dihedral angle between the green xz half-plane and the yellow half-plane that includes the point P. The Cartesian coordinates of P are roughly (1.09, −1.89, 1.66).

Oblate spheroidal coordinates are often useful in solving partial differential equations when the boundary conditions are defined on an oblate spheroid or a hyperboloid of revolution. For example, they played an important role in the calculation of the Perrin friction factors, which contributed to the awarding of the 1926 Nobel Prize in Physics to Jean Baptiste Perrin. These friction factors determine the rotational diffusion of molecules, which affects the feasibility of many techniques such as protein NMR and from which the hydrodynamic volume and shape of molecules can be inferred. Oblate spheroidal coordinates are also useful in problems of electromagnetism (e.g., dielectric constant of charged oblate molecules), acoustics (e.g., scattering of sound through a circular hole), fluid dynamics (e.g., the flow of water through a firehose nozzle) and the diffusion of materials and heat (e.g., cooling of a red-hot coin in a water bath)

Definition (μ,ν,φ)

edit
 
Figure 2: Plot of the oblate spheroidal coordinates μ and ν in the x-z plane, where φ is zero and a equals one. The curves of constant μ form red ellipses, whereas those of constant ν form cyan half-hyperbolae in this plane. The z-axis runs vertically and separates the foci; the coordinates z and ν always have the same sign. The surfaces of constant μ and ν in three dimensions are obtained by rotation about the z-axis, and are the red and blue surfaces, respectively, in Figure 1.

The most common definition of oblate spheroidal coordinates   is  

where   is a nonnegative real number and the angle  . The azimuthal angle   can fall anywhere on a full circle, between  . These coordinates are favored over the alternatives below because they are not degenerate; the set of coordinates   describes a unique point in Cartesian coordinates  . The reverse is also true, except on the  -axis and the disk in the  -plane inside the focal ring.

Coordinate surfaces

edit

The surfaces of constant μ form oblate spheroids, by the trigonometric identity  

since they are ellipses rotated about the z-axis, which separates their foci. An ellipse in the x-z plane (Figure 2) has a major semiaxis of length a cosh μ along the x-axis, whereas its minor semiaxis has length a sinh μ along the z-axis. The foci of all the ellipses in the x-z plane are located on the x-axis at ±a.

Similarly, the surfaces of constant ν form one-sheet half hyperboloids of revolution by the hyperbolic trigonometric identity

 

For positive ν, the half-hyperboloid is above the x-y plane (i.e., has positive z) whereas for negative ν, the half-hyperboloid is below the x-y plane (i.e., has negative z). Geometrically, the angle ν corresponds to the angle of the asymptotes of the hyperbola. The foci of all the hyperbolae are likewise located on the x-axis at ±a.

Inverse transformation

edit

The (μ, ν, φ) coordinates may be calculated from the Cartesian coordinates (x, y, z) as follows. The azimuthal angle φ is given by the formula  

The cylindrical radius ρ of the point P is given by   and its distances to the foci in the plane defined by φ is given by  

The remaining coordinates μ and ν can be calculated from the equations  

where the sign of μ is always non-negative, and the sign of ν is the same as that of z.

Another method to compute the inverse transform is

 

where  

Scale factors

edit

The scale factors for the coordinates μ and ν are equal   whereas the azimuthal scale factor equals  

Consequently, an infinitesimal volume element equals   and the Laplacian can be written  

Other differential operators such as   and   can be expressed in the coordinates (μ, ν, φ) by substituting the scale factors into the general formulae found in orthogonal coordinates.

Basis Vectors

edit

The orthonormal basis vectors for the   coordinate system can be expressed in Cartesian coordinates as

 

where   are the Cartesian unit vectors. Here,   is the outward normal vector to the oblate spheroidal surface of constant  ,   is the same azimuthal unit vector from spherical coordinates, and   lies in the tangent plane to the oblate spheroid surface and completes the right-handed basis set.

Definition (ζ, ξ, φ)

edit

Another set of oblate spheroidal coordinates   are sometimes used where   and   (Smythe 1968). The curves of constant   are oblate spheroids and the curves of constant   are the hyperboloids of revolution. The coordinate   is restricted by   and   is restricted by  .

The relationship to Cartesian coordinates is  

Scale factors

edit

The scale factors for   are:  

Knowing the scale factors, various functions of the coordinates can be calculated by the general method outlined in the orthogonal coordinates article. The infinitesimal volume element is:  

The gradient is:  

The divergence is:  

and the Laplacian equals  

Oblate spheroidal harmonics

edit

As is the case with spherical coordinates and spherical harmonics, Laplace's equation may be solved by the method of separation of variables to yield solutions in the form of oblate spheroidal harmonics, which are convenient to use when boundary conditions are defined on a surface with a constant oblate spheroidal coordinate.

Following the technique of separation of variables, a solution to Laplace's equation is written:  

This yields three separate differential equations in each of the variables:   where m is a constant which is an integer because the φ variable is periodic with period 2π. n will then be an integer. The solution to these equations are:   where the   are constants and   and   are associated Legendre polynomials of the first and second kind respectively. The product of the three solutions is called an oblate spheroidal harmonic and the general solution to Laplace's equation is written:  

The constants will combine to yield only four independent constants for each harmonic.

Definition (σ, τ, φ)

edit
 
Figure 3: Coordinate isosurfaces for a point P (shown as a black sphere) in the alternative oblate spheroidal coordinates (σ, τ, φ). As before, the oblate spheroid corresponding to σ is shown in red, and φ measures the azimuthal angle between the green and yellow half-planes. However, the surface of constant τ is a full one-sheet hyperboloid, shown in blue. This produces a two-fold degeneracy, shown by the two black spheres located at (x, y, ±z).

An alternative and geometrically intuitive set of oblate spheroidal coordinates (σ, τ, φ) are sometimes used, where σ = cosh μ and τ = cos ν.[1] Therefore, the coordinate σ must be greater than or equal to one, whereas τ must lie between ±1, inclusive. The surfaces of constant σ are oblate spheroids, as were those of constant μ, whereas the curves of constant τ are full hyperboloids of revolution, including the half-hyperboloids corresponding to ±ν. Thus, these coordinates are degenerate; two points in Cartesian coordinates (x, y, ±z) map to one set of coordinates (σ, τ, φ). This two-fold degeneracy in the sign of z is evident from the equations transforming from oblate spheroidal coordinates to the Cartesian coordinates  

The coordinates   and   have a simple relation to the distances to the focal ring. For any point, the sum   of its distances to the focal ring equals  , whereas their difference   equals  . Thus, the "far" distance to the focal ring is  , whereas the "near" distance is  .

Coordinate surfaces

edit

Similar to its counterpart μ, the surfaces of constant σ form oblate spheroids  

Similarly, the surfaces of constant τ form full one-sheet hyperboloids of revolution  

Scale factors

edit

The scale factors for the alternative oblate spheroidal coordinates   are   whereas the azimuthal scale factor is  .

Hence, the infinitesimal volume element can be written   and the Laplacian equals  

Other differential operators such as   and   can be expressed in the coordinates   by substituting the scale factors into the general formulae found in orthogonal coordinates.

As is the case with spherical coordinates, Laplaces equation may be solved by the method of separation of variables to yield solutions in the form of oblate spheroidal harmonics, which are convenient to use when boundary conditions are defined on a surface with a constant oblate spheroidal coordinate (See Smythe, 1968).

See also

edit

References

edit
  1. ^ Abramowitz and Stegun, p. 752.

Bibliography

edit

No angles convention

edit
  • Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 662. Uses ξ1 = a sinh μ, ξ2 = sin ν, and ξ3 = cos φ.
  • Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 115. ISBN 0-86720-293-9. Same as Morse & Feshbach (1953), substituting uk for ξk.
  • Smythe, WR (1968). Static and Dynamic Electricity (3rd ed.). New York: McGraw-Hill.
  • Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. p. 98. LCCN 67025285. Uses hybrid coordinates ξ = sinh μ, η = sin ν, and φ.

Angle convention

edit

Unusual convention

edit
  • Landau LD, Lifshitz EM, Pitaevskii LP (1984). Electrodynamics of Continuous Media (Volume 8 of the Course of Theoretical Physics) (2nd ed.). New York: Pergamon Press. pp. 19–29. ISBN 978-0-7506-2634-7. Treats the oblate spheroidal coordinates as a limiting case of the general ellipsoidal coordinates. Uses (ξ, η, ζ) coordinates that have the units of distance squared.
edit