Given a unital C*-algebra , a *-closed subspace S containing 1 is called an operator system. One can associate to each subspace of a unital C*-algebra an operator system via .

The appropriate morphisms between operator systems are completely positive maps.

By a theorem of Choi and Effros, operator systems can be characterized as *-vector spaces equipped with an Archimedean matrix order.[1]

See also

edit

References

edit
  1. ^ Choi M.D., Effros, E.G. Injectivity and operator spaces. Journal of Functional Analysis 1977