PLATO (computational chemistry)

PLATO (Package for Linear-combination of ATomic Orbitals) is a suite of programs for electronic structure calculations. It receives its name from the choice of basis set (numeric atomic orbitals) used to expand the electronic wavefunctions.

PLATO
Stable release
0.9.2
Operating systemLinux / MacOS
LicenseSpecific to this program.
Websitewww.imperial.ac.uk/people/a.horsfield/research.html

PLATO is a code, written in C, for the efficient modelling of materials. It is a tight binding code (both orthogonal and non-orthogonal), allowing for multipole charges and electron spin. It also contains Density Functional Theory programs: these were restored to enable clear benchmarking to tight binding simulations, but can be used in their own right. The Density Functional Tight Binding program can be applied to systems with periodic boundary conditions in three dimension (crystals), as well as clusters and molecules. [1] [2] [3] [4]

How PLATO works

edit

How PLATO performs Density Functional Theory is summarized in several papers: [5] [6] .[7] The way it performs tight binding is summarized in the following papers [8] [9]

Applications of PLATO

edit

Some examples of its use are listed below.

Metals

edit
  • Point defects in transition metals: Density functional theory calculations have been performed to study the systematic trends of point defect behaviours in bee transition metals.[10]

Surfaces

edit
  • Interaction of C60 molecules on Si(100):The interactions between pairs of C60 molecules adsorbed upon the Si(100) surface have been studied via a series of DFT calculations.[11]

Molecules

edit
  • Efficient local-orbitals based method for ultrafast dynamics: The evolution of electrons in molecules under the influence of time-dependent electric fields is simulated.[12]

See also

edit

References

edit
  1. ^ Nguyen-Manh, D.; Horsfield, A. P.; Dudarev, S. L. (2006-01-03). "Self-interstitial atom defects in bcc transition metals: Group-specific trends". Physical Review B. 73 (2). American Physical Society (APS): 020101. Bibcode:2006PhRvB..73b0101N. doi:10.1103/physrevb.73.020101. ISSN 1098-0121.
  2. ^ Smith, Roger; Kenny, S D; Sanz-Navarro, C F; Belbruno, Joseph J (2003-10-13). "Nanostructured surfaces described by atomistic simulation methods". Journal of Physics: Condensed Matter. 15 (42). IOP Publishing: S3153–S3169. Bibcode:2003JPCM...15S3153S. doi:10.1088/0953-8984/15/42/012. ISSN 0953-8984. S2CID 250851134.
  3. ^ Sanville, E. J.; Vernon, L. J.; Kenny, S. D.; Smith, R.; Moghaddam, Y.; Browne, C.; Mulheran, P. (2009-12-07). "Surface and interstitial transition barriers in rutile (110) surface growth". Physical Review B. 80 (23). American Physical Society (APS): 235308. Bibcode:2009PhRvB..80w5308S. doi:10.1103/physrevb.80.235308. ISSN 1098-0121. S2CID 53310888.
  4. ^ Gilbert, C A; Smith, R; Kenny, S D; Murphy, S T; Grimes, R W; Ball, J A (2009-06-12). "A theoretical study of intrinsic point defects and defect clusters in magnesium aluminate spinel". Journal of Physics: Condensed Matter. 21 (27). IOP Publishing: 275406. Bibcode:2009JPCM...21A5406G. doi:10.1088/0953-8984/21/27/275406. ISSN 0953-8984. PMID 21828490. S2CID 2642437.
  5. ^ Horsfield, Andrew P. (1997-09-15). "Efficientab initiotight binding". Physical Review B. 56 (11). American Physical Society (APS): 6594–6602. Bibcode:1997PhRvB..56.6594H. doi:10.1103/physrevb.56.6594. ISSN 0163-1829.
  6. ^ Kenny, S.; Horsfield, A.; Fujitani, Hideaki (2000). "Transferable atomic-type orbital basis sets for solids". Physical Review B. 62 (8). American Physical Society (APS): 4899–4905. Bibcode:2000PhRvB..62.4899K. doi:10.1103/physrevb.62.4899. ISSN 0163-1829.
  7. ^ Kenny, S.D.; Horsfield, A.P. (2009). "Plato: A localised orbital based density functional theory code". Computer Physics Communications. 180 (12). Elsevier BV: 2616–2621. Bibcode:2009CoPhC.180.2616K. doi:10.1016/j.cpc.2009.08.006. ISSN 0010-4655. S2CID 12553697.
  8. ^ Soin, Preetma; Horsfield, A.P.; Nguyen-Manh, D. (2011). "Efficient self-consistency for magnetic tight binding". Computer Physics Communications. 182 (6). Elsevier BV: 1350–1360. Bibcode:2011CoPhC.182.1350S. doi:10.1016/j.cpc.2011.01.030. ISSN 0010-4655.
  9. ^ Boleininger, Max; Guilbert, Anne AY; Horsfield, Andrew P. (2016-10-14). "Gaussian polarizable-ion tight binding". The Journal of Chemical Physics. 145 (14). AIP Publishing: 144103. Bibcode:2016JChPh.145n4103B. doi:10.1063/1.4964391. hdl:10044/1/40672. ISSN 0021-9606. PMID 27782521.
  10. ^ Nguyen-Manh, D.; Dudarev, S.L.; Horsfield, A.P. (2007). "Systematic group-specific trends for point defects in bcc transition metals: An ab initio study". Journal of Nuclear Materials. 367–370. Elsevier BV: 257–262. Bibcode:2007JNuM..367..257N. doi:10.1016/j.jnucmat.2007.03.006. ISSN 0022-3115.
  11. ^ King, D.J.; Frangou, P.C.; Kenny, S.D. (2009). "Interaction of C60 molecules on Si(100)". Surface Science. 603 (4). Elsevier BV: 676–682. Bibcode:2009SurSc.603..676K. doi:10.1016/j.susc.2008.12.035. ISSN 0039-6028. S2CID 62822522.
  12. ^ Boleininger, Max; Horsfield, Andrew P. (2017-07-28). "Efficient local-orbitals based method for ultrafast dynamics". The Journal of Chemical Physics. 147 (4). AIP Publishing: 044111. Bibcode:2017JChPh.147d4111B. doi:10.1063/1.4995611. hdl:10044/1/50079. ISSN 0021-9606. PMID 28764349.
edit