In mathematics, the Parseval–Gutzmer formula states that, if
f
{\displaystyle f}
is an analytic function on a closed disk of radius r with Taylor series
f
(
z
)
=
∑
k
=
0
∞
a
k
z
k
,
{\displaystyle f(z)=\sum _{k=0}^{\infty }a_{k}z^{k},}
then for z = reiθ on the boundary of the disk,
∫
0
2
π
|
f
(
r
e
i
θ
)
|
2
d
θ
=
2
π
∑
k
=
0
∞
|
a
k
|
2
r
2
k
,
{\displaystyle \int _{0}^{2\pi }|f(re^{i\theta })|^{2}\,\mathrm {d} \theta =2\pi \sum _{k=0}^{\infty }|a_{k}|^{2}r^{2k},}
which may also be written as
1
2
π
∫
0
2
π
|
f
(
r
e
i
θ
)
|
2
d
θ
=
∑
k
=
0
∞
|
a
k
r
k
|
2
.
{\displaystyle {\frac {1}{2\pi }}\int _{0}^{2\pi }|f(re^{i\theta })|^{2}\,\mathrm {d} \theta =\sum _{k=0}^{\infty }|a_{k}r^{k}|^{2}.}
Further Applications
edit
Using this formula, it is possible to show that
∑
k
=
0
∞
|
a
k
|
2
r
2
k
⩽
M
r
2
{\displaystyle \sum _{k=0}^{\infty }|a_{k}|^{2}r^{2k}\leqslant M_{r}^{2}}
where
M
r
=
sup
{
|
f
(
z
)
|
:
|
z
|
=
r
}
.
{\displaystyle M_{r}=\sup\{|f(z)|:|z|=r\}.}
This is done by using the integral
∫
0
2
π
|
f
(
r
e
i
θ
)
|
2
d
θ
⩽
2
π
|
max
θ
∈
[
0
,
2
π
)
(
f
(
r
e
i
θ
)
)
|
2
=
2
π
|
max
|
z
|
=
r
(
f
(
z
)
)
|
2
=
2
π
M
r
2
{\displaystyle \int _{0}^{2\pi }\left|f\left(re^{i\theta }\right)\right|^{2}\,\mathrm {d} \theta \leqslant 2\pi \left|\max _{\theta \in [0,2\pi )}\left(f\left(re^{i\theta }\right)\right)\right|^{2}=2\pi \left|\max _{|z|=r}(f(z))\right|^{2}=2\pi M_{r}^{2}}