Let
f
(
z
)
{\displaystyle f(z)}
be a function meromorphic in the finite complex plane with poles at
λ
1
,
λ
2
,
.
.
.
{\displaystyle \lambda _{1},\lambda _{2},...}
and let
(
Γ
1
,
Γ
2
,
.
.
.
)
{\displaystyle (\Gamma _{1},\Gamma _{2},...)}
be a sequence of simple closed curves such that:
The origin lies inside each curve
Γ
k
{\displaystyle \Gamma _{k}}
No curve passes through a pole of
f
{\displaystyle f}
Γ
k
{\displaystyle \Gamma _{k}}
lies inside
Γ
k
+
1
{\displaystyle \Gamma _{k+1}}
for all
k
{\displaystyle k}
lim
k
→
∞
d
(
Γ
k
)
=
∞
{\displaystyle \lim _{k\rightarrow \infty }d(\Gamma _{k})=\infty }
, where
d
(
Γ
k
)
{\displaystyle d(\Gamma _{k})}
gives the distance from the curve to the origin
one more condition of compatibility with the poles
λ
k
{\displaystyle \lambda _{k}}
, described at the end of this section
Suppose also that there exists an integer
p
{\displaystyle p}
such that
lim
k
→
∞
∮
Γ
k
|
f
(
z
)
z
p
+
1
|
|
d
z
|
<
∞
{\displaystyle \lim _{k\rightarrow \infty }\oint _{\Gamma _{k}}\left|{\frac {f(z)}{z^{p+1}}}\right||dz|<\infty }
Writing
PP
(
f
(
z
)
;
z
=
λ
k
)
{\displaystyle \operatorname {PP} (f(z);z=\lambda _{k})}
for the principal part of the Laurent expansion of
f
{\displaystyle f}
about the point
λ
k
{\displaystyle \lambda _{k}}
, we have
f
(
z
)
=
∑
k
=
0
∞
PP
(
f
(
z
)
;
z
=
λ
k
)
,
{\displaystyle f(z)=\sum _{k=0}^{\infty }\operatorname {PP} (f(z);z=\lambda _{k}),}
if
p
=
−
1
{\displaystyle p=-1}
. If
p
>
−
1
{\displaystyle p>-1}
, then
f
(
z
)
=
∑
k
=
0
∞
(
PP
(
f
(
z
)
;
z
=
λ
k
)
+
c
0
,
k
+
c
1
,
k
z
+
⋯
+
c
p
,
k
z
p
)
,
{\displaystyle f(z)=\sum _{k=0}^{\infty }(\operatorname {PP} (f(z);z=\lambda _{k})+c_{0,k}+c_{1,k}z+\cdots +c_{p,k}z^{p}),}
where the coefficients
c
j
,
k
{\displaystyle c_{j,k}}
are given by
c
j
,
k
=
Res
z
=
λ
k
f
(
z
)
z
j
+
1
{\displaystyle c_{j,k}=\operatorname {Res} _{z=\lambda _{k}}{\frac {f(z)}{z^{j+1}}}}
λ
0
{\displaystyle \lambda _{0}}
should be set to 0, because even if
f
(
z
)
{\displaystyle f(z)}
itself does not have a pole at 0, the residues of
f
(
z
)
z
j
+
1
{\textstyle {\frac {f(z)}{z^{j+1}}}}
at
z
=
0
{\displaystyle z=0}
must still be included in the sum.
Note that in the case of
λ
0
=
0
{\displaystyle \lambda _{0}=0}
, we can use the Laurent expansion of
f
(
z
)
{\displaystyle f(z)}
about the origin to get
f
(
z
)
=
a
−
m
z
m
+
a
−
m
+
1
z
m
−
1
+
⋯
+
a
0
+
a
1
z
+
⋯
{\displaystyle f(z)={\frac {a_{-m}}{z^{m}}}+{\frac {a_{-m+1}}{z^{m-1}}}+\cdots +a_{0}+a_{1}z+\cdots }
c
j
,
k
=
Res
z
=
0
(
a
−
m
z
m
+
j
+
1
+
a
−
m
+
1
z
m
+
j
+
⋯
+
a
j
z
+
⋯
)
=
a
j
,
{\displaystyle c_{j,k}=\operatorname {Res} _{z=0}\left({\frac {a_{-m}}{z^{m+j+1}}}+{\frac {a_{-m+1}}{z^{m+j}}}+\cdots +{\frac {a_{j}}{z}}+\cdots \right)=a_{j},}
∑
j
=
0
p
c
j
,
k
z
j
=
a
0
+
a
1
z
+
⋯
+
a
p
z
p
{\displaystyle \sum _{j=0}^{p}c_{j,k}z^{j}=a_{0}+a_{1}z+\cdots +a_{p}z^{p}}
so that the polynomial terms contributed are exactly the regular part of the Laurent series up to
z
p
{\displaystyle z^{p}}
.
For the other poles
λ
k
{\displaystyle \lambda _{k}}
where
k
≥
1
{\displaystyle k\geq 1}
,
1
z
j
+
1
{\textstyle {\frac {1}{z^{j+1}}}}
can be pulled out of the residue calculations:
c
j
,
k
=
1
λ
k
j
+
1
Res
z
=
λ
k
f
(
z
)
{\displaystyle c_{j,k}={\frac {1}{\lambda _{k}^{j+1}}}\operatorname {Res} _{z=\lambda _{k}}f(z)}
∑
j
=
0
p
c
j
,
k
z
j
=
[
Res
z
=
λ
k
f
(
z
)
]
∑
j
=
0
p
1
λ
k
j
+
1
z
j
{\displaystyle \sum _{j=0}^{p}c_{j,k}z^{j}=[\operatorname {Res} _{z=\lambda _{k}}f(z)]\sum _{j=0}^{p}{\frac {1}{\lambda _{k}^{j+1}}}z^{j}}
To avoid issues with convergence, the poles should be ordered so that if
λ
k
{\displaystyle \lambda _{k}}
is inside
Γ
n
{\displaystyle \Gamma _{n}}
, then
λ
j
{\displaystyle \lambda _{j}}
is also inside
Γ
n
{\displaystyle \Gamma _{n}}
for all
j
<
k
{\displaystyle j<k}
.
The simplest meromorphic functions with an infinite number of poles are the non-entire trigonometric functions. As an example,
tan
(
z
)
{\displaystyle \tan(z)}
is meromorphic with poles at
(
n
+
1
2
)
π
{\textstyle (n+{\frac {1}{2}})\pi }
,
n
=
0
,
±
1
,
±
2
,
.
.
.
{\displaystyle n=0,\pm 1,\pm 2,...}
The contours
Γ
k
{\displaystyle \Gamma _{k}}
will be squares with vertices at
±
π
k
±
π
k
i
{\displaystyle \pm \pi k\pm \pi ki}
traversed counterclockwise,
k
>
1
{\displaystyle k>1}
, which are easily seen to satisfy the necessary conditions.
On the horizontal sides of
Γ
k
{\displaystyle \Gamma _{k}}
,
z
=
t
±
π
k
i
,
t
∈
[
−
π
k
,
π
k
]
,
{\displaystyle z=t\pm \pi ki,\ \ t\in [-\pi k,\pi k],}
so
|
tan
(
z
)
|
2
=
|
sin
(
t
)
cosh
(
π
k
)
±
i
cos
(
t
)
sinh
(
π
k
)
cos
(
t
)
cosh
(
π
k
)
±
i
sin
(
t
)
sinh
(
π
k
)
|
2
{\displaystyle |\tan(z)|^{2}=\left|{\frac {\sin(t)\cosh(\pi k)\pm i\cos(t)\sinh(\pi k)}{\cos(t)\cosh(\pi k)\pm i\sin(t)\sinh(\pi k)}}\right|^{2}}
|
tan
(
z
)
|
2
=
sin
2
(
t
)
cosh
2
(
π
k
)
+
cos
2
(
t
)
sinh
2
(
π
k
)
cos
2
(
t
)
cosh
2
(
π
k
)
+
sin
2
(
t
)
sinh
2
(
π
k
)
{\displaystyle |\tan(z)|^{2}={\frac {\sin ^{2}(t)\cosh ^{2}(\pi k)+\cos ^{2}(t)\sinh ^{2}(\pi k)}{\cos ^{2}(t)\cosh ^{2}(\pi k)+\sin ^{2}(t)\sinh ^{2}(\pi k)}}}
sinh
(
x
)
<
cosh
(
x
)
{\displaystyle \sinh(x)<\cosh(x)}
for all real
x
{\displaystyle x}
, which yields
|
tan
(
z
)
|
2
<
cosh
2
(
π
k
)
(
sin
2
(
t
)
+
cos
2
(
t
)
)
sinh
2
(
π
k
)
(
cos
2
(
t
)
+
sin
2
(
t
)
)
=
coth
2
(
π
k
)
{\displaystyle |\tan(z)|^{2}<{\frac {\cosh ^{2}(\pi k)(\sin ^{2}(t)+\cos ^{2}(t))}{\sinh ^{2}(\pi k)(\cos ^{2}(t)+\sin ^{2}(t))}}=\coth ^{2}(\pi k)}
For
x
>
0
{\displaystyle x>0}
,
coth
(
x
)
{\displaystyle \coth(x)}
is continuous, decreasing, and bounded below by 1, so it follows that on the horizontal sides of
Γ
k
{\displaystyle \Gamma _{k}}
,
|
tan
(
z
)
|
<
coth
(
π
)
{\displaystyle |\tan(z)|<\coth(\pi )}
. Similarly, it can be shown that
|
tan
(
z
)
|
<
1
{\displaystyle |\tan(z)|<1}
on the vertical sides of
Γ
k
{\displaystyle \Gamma _{k}}
.
With this bound on
|
tan
(
z
)
|
{\displaystyle |\tan(z)|}
we can see that
∮
Γ
k
|
tan
(
z
)
z
|
d
z
≤
length
(
Γ
k
)
max
z
∈
Γ
k
|
tan
(
z
)
z
|
<
8
k
π
coth
(
π
)
k
π
=
8
coth
(
π
)
<
∞
.
{\displaystyle \oint _{\Gamma _{k}}\left|{\frac {\tan(z)}{z}}\right|dz\leq \operatorname {length} (\Gamma _{k})\max _{z\in \Gamma _{k}}\left|{\frac {\tan(z)}{z}}\right|<8k\pi {\frac {\coth(\pi )}{k\pi }}=8\coth(\pi )<\infty .}
That is, the maximum of
|
1
z
|
{\textstyle |{\frac {1}{z}}|}
on
Γ
k
{\displaystyle \Gamma _{k}}
occurs at the minimum of
|
z
|
{\displaystyle |z|}
, which is
k
π
{\displaystyle k\pi }
.
Therefore
p
=
0
{\displaystyle p=0}
, and the partial fraction expansion of
tan
(
z
)
{\displaystyle \tan(z)}
looks like
tan
(
z
)
=
∑
k
=
0
∞
(
PP
(
tan
(
z
)
;
z
=
λ
k
)
+
Res
z
=
λ
k
tan
(
z
)
z
)
.
{\displaystyle \tan(z)=\sum _{k=0}^{\infty }(\operatorname {PP} (\tan(z);z=\lambda _{k})+\operatorname {Res} _{z=\lambda _{k}}{\frac {\tan(z)}{z}}).}
The principal parts and residues are easy enough to calculate, as all the poles of
tan
(
z
)
{\displaystyle \tan(z)}
are simple and have residue -1:
PP
(
tan
(
z
)
;
z
=
(
n
+
1
2
)
π
)
=
−
1
z
−
(
n
+
1
2
)
π
{\displaystyle \operatorname {PP} (\tan(z);z=(n+{\frac {1}{2}})\pi )={\frac {-1}{z-(n+{\frac {1}{2}})\pi }}}
Res
z
=
(
n
+
1
2
)
π
tan
(
z
)
z
=
−
1
(
n
+
1
2
)
π
{\displaystyle \operatorname {Res} _{z=(n+{\frac {1}{2}})\pi }{\frac {\tan(z)}{z}}={\frac {-1}{(n+{\frac {1}{2}})\pi }}}
We can ignore
λ
0
=
0
{\displaystyle \lambda _{0}=0}
, since both
tan
(
z
)
{\displaystyle \tan(z)}
and
tan
(
z
)
z
{\textstyle {\frac {\tan(z)}{z}}}
are analytic at 0, so there is no contribution to the sum, and ordering the poles
λ
k
{\displaystyle \lambda _{k}}
so that
λ
1
=
π
2
,
λ
2
=
−
π
2
,
λ
3
=
3
π
2
{\textstyle \lambda _{1}={\frac {\pi }{2}},\lambda _{2}={\frac {-\pi }{2}},\lambda _{3}={\frac {3\pi }{2}}}
, etc., gives
tan
(
z
)
=
∑
k
=
0
∞
[
(
−
1
z
−
(
k
+
1
2
)
π
−
1
(
k
+
1
2
)
π
)
+
(
−
1
z
+
(
k
+
1
2
)
π
+
1
(
k
+
1
2
)
π
)
]
{\displaystyle \tan(z)=\sum _{k=0}^{\infty }\left[\left({\frac {-1}{z-(k+{\frac {1}{2}})\pi }}-{\frac {1}{(k+{\frac {1}{2}})\pi }}\right)+\left({\frac {-1}{z+(k+{\frac {1}{2}})\pi }}+{\frac {1}{(k+{\frac {1}{2}})\pi }}\right)\right]}
tan
(
z
)
=
∑
k
=
0
∞
−
2
z
z
2
−
(
k
+
1
2
)
2
π
2
{\displaystyle \tan(z)=\sum _{k=0}^{\infty }{\frac {-2z}{z^{2}-(k+{\frac {1}{2}})^{2}\pi ^{2}}}}
Because the partial fraction expansion often yields sums of
1
a
+
b
z
{\textstyle {\frac {1}{a+bz}}}
, it can be useful in finding a way to write a function as an infinite product ; integrating both sides gives a sum of logarithms, and exponentiating gives the desired product:
tan
(
z
)
=
−
∑
k
=
0
∞
(
1
z
−
(
k
+
1
2
)
π
+
1
z
+
(
k
+
1
2
)
π
)
{\displaystyle \tan(z)=-\sum _{k=0}^{\infty }\left({\frac {1}{z-(k+{\frac {1}{2}})\pi }}+{\frac {1}{z+(k+{\frac {1}{2}})\pi }}\right)}
∫
0
z
tan
(
w
)
d
w
=
log
sec
z
{\displaystyle \int _{0}^{z}\tan(w)dw=\log \sec z}
∫
0
z
1
w
±
(
k
+
1
2
)
π
d
w
=
log
(
1
±
z
(
k
+
1
2
)
π
)
{\displaystyle \int _{0}^{z}{\frac {1}{w\pm (k+{\frac {1}{2}})\pi }}dw=\log \left(1\pm {\frac {z}{(k+{\frac {1}{2}})\pi }}\right)}
Applying some logarithm rules,
log
sec
z
=
−
∑
k
=
0
∞
(
log
(
1
−
z
(
k
+
1
2
)
π
)
+
log
(
1
+
z
(
k
+
1
2
)
π
)
)
{\displaystyle \log \sec z=-\sum _{k=0}^{\infty }\left(\log \left(1-{\frac {z}{(k+{\frac {1}{2}})\pi }}\right)+\log \left(1+{\frac {z}{(k+{\frac {1}{2}})\pi }}\right)\right)}
log
cos
z
=
∑
k
=
0
∞
log
(
1
−
z
2
(
k
+
1
2
)
2
π
2
)
,
{\displaystyle \log \cos z=\sum _{k=0}^{\infty }\log \left(1-{\frac {z^{2}}{(k+{\frac {1}{2}})^{2}\pi ^{2}}}\right),}
which finally gives
cos
z
=
∏
k
=
0
∞
(
1
−
z
2
(
k
+
1
2
)
2
π
2
)
.
{\displaystyle \cos z=\prod _{k=0}^{\infty }\left(1-{\frac {z^{2}}{(k+{\frac {1}{2}})^{2}\pi ^{2}}}\right).}
The partial fraction expansion for a function can also be used to find a Laurent series for it by simply replacing the rational functions in the sum with their Laurent series, which are often not difficult to write in closed form. This can also lead to interesting identities if a Laurent series is already known.
Recall that
tan
(
z
)
=
∑
k
=
0
∞
−
2
z
z
2
−
(
k
+
1
2
)
2
π
2
=
∑
k
=
0
∞
−
8
z
4
z
2
−
(
2
k
+
1
)
2
π
2
.
{\displaystyle \tan(z)=\sum _{k=0}^{\infty }{\frac {-2z}{z^{2}-(k+{\frac {1}{2}})^{2}\pi ^{2}}}=\sum _{k=0}^{\infty }{\frac {-8z}{4z^{2}-(2k+1)^{2}\pi ^{2}}}.}
We can expand the summand using a geometric series:
−
8
z
4
z
2
−
(
2
k
+
1
)
2
π
2
=
8
z
(
2
k
+
1
)
2
π
2
1
1
−
(
2
z
(
2
k
+
1
)
π
)
2
=
8
(
2
k
+
1
)
2
π
2
∑
n
=
0
∞
2
2
n
(
2
k
+
1
)
2
n
π
2
n
z
2
n
+
1
.
{\displaystyle {\frac {-8z}{4z^{2}-(2k+1)^{2}\pi ^{2}}}={\frac {8z}{(2k+1)^{2}\pi ^{2}}}{\frac {1}{1-({\frac {2z}{(2k+1)\pi }})^{2}}}={\frac {8}{(2k+1)^{2}\pi ^{2}}}\sum _{n=0}^{\infty }{\frac {2^{2n}}{(2k+1)^{2n}\pi ^{2n}}}z^{2n+1}.}
Substituting back,
tan
(
z
)
=
2
∑
k
=
0
∞
∑
n
=
0
∞
2
2
n
+
2
(
2
k
+
1
)
2
n
+
2
π
2
n
+
2
z
2
n
+
1
,
{\displaystyle \tan(z)=2\sum _{k=0}^{\infty }\sum _{n=0}^{\infty }{\frac {2^{2n+2}}{(2k+1)^{2n+2}\pi ^{2n+2}}}z^{2n+1},}
which shows that the coefficients
a
n
{\displaystyle a_{n}}
in the Laurent (Taylor) series of
tan
(
z
)
{\displaystyle \tan(z)}
about
z
=
0
{\displaystyle z=0}
are
a
2
n
+
1
=
T
2
n
+
1
(
2
n
+
1
)
!
=
2
2
n
+
3
π
2
n
+
2
∑
k
=
0
∞
1
(
2
k
+
1
)
2
n
+
2
{\displaystyle a_{2n+1}={\frac {T_{2n+1}}{(2n+1)!}}={\frac {2^{2n+3}}{\pi ^{2n+2}}}\sum _{k=0}^{\infty }{\frac {1}{(2k+1)^{2n+2}}}}
a
2
n
=
T
2
n
(
2
n
)
!
=
0
,
{\displaystyle a_{2n}={\frac {T_{2n}}{(2n)!}}=0,}
where
T
n
{\displaystyle T_{n}}
are the tangent numbers .
Conversely, we can compare this formula to the Taylor expansion for
tan
(
z
)
{\displaystyle \tan(z)}
about
z
=
0
{\displaystyle z=0}
to calculate the infinite sums:
tan
(
z
)
=
z
+
1
3
z
3
+
2
15
z
5
+
⋯
{\displaystyle \tan(z)=z+{\frac {1}{3}}z^{3}+{\frac {2}{15}}z^{5}+\cdots }
∑
k
=
0
∞
1
(
2
k
+
1
)
2
=
π
2
2
3
=
π
2
8
{\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(2k+1)^{2}}}={\frac {\pi ^{2}}{2^{3}}}={\frac {\pi ^{2}}{8}}}
∑
k
=
0
∞
1
(
2
k
+
1
)
4
=
1
3
π
4
2
5
=
π
4
96
.
{\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(2k+1)^{4}}}={\frac {1}{3}}{\frac {\pi ^{4}}{2^{5}}}={\frac {\pi ^{4}}{96}}.}
Markushevich, A.I. Theory of functions of a complex variable . Trans. Richard A. Silverman. Vol. 2. Englewood Cliffs, N.J.: Prentice-Hall, 1965.