together with the products of these matrices with the factors and :
.
The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli.
The Pauli group on qubits, , is the group generated by the operators described above applied to each of qubits in the tensor productHilbert space. That is,
The order of is since a scalar or factor in any tensor position can be moved to any other position.
The Pauli group is a representation of the gamma group in three-dimensional Euclidean space. It is not isomorphic to the gamma group; it is less free, in that its chiral element is whereas there is no such relationship for the gamma group.