Poison exons [PEs; also called premature termination codon (PTC) exons or nonsense-mediated decay (NMD) exons] are a class of cassette exons that contain PTCs. Inclusion of a PE in a transcript targets the transcript for degradation via NMD. PEs are generally highly conserved elements of the genome and are thought to have important regulatory roles in biology.[1][2] Targeting PE inclusion or exclusion in certain transcripts is being evaluated as a therapeutic strategy.

Certain transcripts contain poison exons that can be incorporated via alternative splicing. Skipping of the poison exon leads to a productive transcript that is translated to protein. Incorporation of the poison exon introduces a premature termination codon into the transcript that leads to degradation of the transcript via nonsense-mediated decay. (PDB: 2N3L)

Discovery

edit

In 2002, a model termed regulated unproductive splicing and translation (RUST) was proposed based on the finding that many (~one-third) alternatively spliced transcripts contain PEs. In this model, coupling alternative splicing to NMD (AS-NMD) is thought to tune transcript levels to regulate protein expression.[3] Alternative splicing may also lead to NMD via other pathways besides PE inclusion, e.g., intron retention.[4][5]

PEs were initially characterized in RNA-binding proteins from the SR protein family.[1][2] Genes for other RNA-binding proteins (RBPs) such as those for heterogenous nuclear ribonucleoprotein (hnRNP) also contain PEs.[2] Numerous chromatin regulators also contain PEs, though these are less conserved than PEs within RBPs such as the SR proteins.[6] Multiple spliceosomal components contain PEs.[7]

PE-containing transcripts generally represent a minority of the overall transcript population, in part due to their active degradation via NMD, though this relative abundance can be elevated upon inhibition of NMD or certain biological states.[2][8][9][10]

Regulation

edit

Many proteins whose corresponding genes contain PEs autoregulate PE inclusion in their respective transcripts and thereby control their own levels via a feedback loop.[11][12][13]

Differential splicing of PEs is implicated in biological processes such as differentiation,[14][15] dispersal of nuclear speckles during hypoxia,[16] tumorigenesis,[15][17] organism growth,[12] and T cell expansion.[18]

Proper regulation of PE inclusion and exclusion is important for health. For example, loss of CCAR1 leads to PE inclusion in the FANCA transcript, resulting in a Fanconi anemia phenotype.[19] Genetic mutations can affect inclusion of PEs and cause disease. Mutations in SF3B1 have been found to promote PE inclusion in BRD9, reducing BRD9 mRNA and protein levels and leading to melanomagenesis.[20] Intronic mutations can lead to PE inclusion, such as in the case of SCN1A, where mutations within intron 20 promote inclusion of the nearby PE 20N, leading to Dravet syndrome-like phenotypes in mouse models.[21][22]

PE inclusion can be regulated by external variables such as temperature and electrical activity. For example, PE inclusion in RBM3 transcript is lowered during hypothermia. This is mediated by temperature-dependent binding of the splicing factor HNRNPH1 to the RBM3 transcript.[9] The neuronal RBPs NOVA1/2 are translocated from the nucleus to the cytoplasm during pilocarpine-induced seizure in mice, and it was found that NOVA1/2 regulates the expression of cryptic PEs.[23]

Therapeutic relevance

edit

As PE inclusion results in transcript degradation, targeted PE inclusion or exclusion is being evaluated as a therapeutic strategy.[24] This strategy may prove especially applicable towards targets whose gene products are not easily ligandable such as "undruggable" proteins. Targeting PE inclusion/exlusion has been demonstrated with both small molecules[25][26] and antisense oligonucleotides (ASOs).[15][27] Small molecules may modulate splicing by stabilizing alternative splice sites.[25][28] ASOs may block specific splice sites or target certain cis-regulatory elements to promote splicing at other sites.[29][30] These ASOs may also be referred to as splice-switching oligonucleotides (SSOs).[15][30] ASO walks tiling different ASOs across a gene sequence may be necessary to identify ASOs that have the desired effect on PE inclusion.[27]

Stoke Therapeutics is evaluating a strategy termed Targeted Augmentation of Nuclear Gene Output (TANGO).[27] Targeting exon 20N in SCN1A mRNA with the antisense oligonucleotide STK-001 blocks inclusion of this PE, leading to elevated levels of the productive SCN1A transcript and the gene product sodium channel protein 1 subunit alpha (NaV1.1). In mouse models of Dravet syndrome, which is driven by mutations in SCN1A,[21][22][31] STK-001 was able to reduce incidence of electrographic seizures and sudden unexpected death in epilepsy and prolong survival.[32][33] As of October 2024, STK-001 is being evaluated in phase 2 clinical trials (NCT04740476).[34]

Stoke Therapeutics is also evaluating the ASO STK-002 for treatment of autosomal dominant optic atrophy (ADOA). STK-002 promotes removal of a PE in the transcript of OPA1, leading to elevated OPA1 protein levels.[35]

Remix Therapeutics developed REM-422, which is an oral small molecule that promotes PE inclusion in the oncogene MYB. REM-422 was discovered through a screening campaign for molecules that promote PE inclusion in MYB. Subsequent in vitro experiments showed that REM-422 selectively facilitates binding of the U1 snRNP complex to oligonucleotides containing the MYB 5' splice site sequence. In various acute myeloid leukemia (AML) cell lines, REM-422 leads to degradation of MYB mRNA and lower MYB protein levels. REM-422 demonstrated antitumor activity in mouse xenograft models of acute myeloid leukemia.[25] As of October 2024, REM-422 is being evaluated in phase 1 clinical trials (NCT06118086, NCT06297941).[36][37] The splicing modulator small molecule risdiplam, originally developed to promote exon 7 inclusion in the SMN2 transcript for treatment of spinal muscular atrophy,[38][39] dose-dependently promotes PE inclusion in the MYB transcript as well.[40]

PTC Therapeutics is evaluating the oral small molecule PTC518 as a treatment for Huntington's disease.[26] As of October 2024, PTC518 is being evaluated in phase 2 clinical trials (NCT05358717).[41]

Therapeutic targeting of poison exon inclusion/exclusion has also been proposed for oncogenic splicing factors,[15][17] BRD9 (for treatment of cancer),[20] SYNGAP1,[42] RBM3 (for treatment of neurodegeneration),[29] and CFTR (for treatment of cystic fibrosis).[43]

References

edit
  1. ^ a b Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E.; Ares, Manuel (2007-03-15). "Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay". Genes & Development. 21 (6): 708–718. doi:10.1101/gad.1525507. ISSN 0890-9369. PMC 1820944. PMID 17369403.
  2. ^ a b c d Lareau, Liana F.; Inada, Maki; Green, Richard E.; Wengrod, Jordan C.; Brenner, Steven E. (April 2007). "Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements". Nature. 446 (7138): 926–929. Bibcode:2007Natur.446..926L. doi:10.1038/nature05676. ISSN 1476-4687. PMID 17361132.
  3. ^ Lewis, Benjamin P.; Green, Richard E.; Brenner, Steven E. (2003-01-07). "Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans". Proceedings of the National Academy of Sciences. 100 (1): 189–192. Bibcode:2003PNAS..100..189L. doi:10.1073/pnas.0136770100. ISSN 0027-8424. PMC 140922. PMID 12502788.
  4. ^ Wong, Justin J.-L.; Ritchie, William; Ebner, Olivia A.; Selbach, Matthias; Wong, Jason W.H.; Huang, Yizhou; Gao, Dadi; Pinello, Natalia; Gonzalez, Maria; Baidya, Kinsha; Thoeng, Annora; Khoo, Teh-Liane; Bailey, Charles G.; Holst, Jeff; Rasko, John E.J. (August 2013). "Orchestrated Intron Retention Regulates Normal Granulocyte Differentiation". Cell. 154 (3): 583–595. doi:10.1016/j.cell.2013.06.052. PMID 23911323.
  5. ^ Braunschweig, Ulrich; Barbosa-Morais, Nuno L.; Pan, Qun; Nachman, Emil N.; Alipanahi, Babak; Gonatopoulos-Pournatzis, Thomas; Frey, Brendan; Irimia, Manuel; Blencowe, Benjamin J. (November 2014). "Widespread intron retention in mammals functionally tunes transcriptomes". Genome Research. 24 (11): 1774. doi:10.1101/gr.177790.114. PMC 4216919. PMID 25258385.
  6. ^ Yan, Qinghong; Weyn-Vanhentenryck, Sebastien M.; Wu, Jie; Sloan, Steven A.; Zhang, Ye; Chen, Kenian; Wu, Jia Qian; Barres, Ben A.; Zhang, Chaolin (2015-03-03). "Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators". Proceedings of the National Academy of Sciences of the United States of America. 112 (11): 3445. Bibcode:2015PNAS..112.3445Y. doi:10.1073/pnas.1502849112. PMC 4371929. PMID 25737549.
  7. ^ Saltzman, Arneet L.; Kim, Yoon Ki; Pan, Qun; Fagnani, Matthew M.; Maquat, Lynne E.; Blencowe, Benjamin J. (2008-04-28). "Regulation of Multiple Core Spliceosomal Proteins by Alternative Splicing-Coupled Nonsense-Mediated mRNA Decay". Molecular and Cellular Biology. 28 (13): 4320. doi:10.1128/MCB.00361-08. PMC 2447145. PMID 18443041.
  8. ^ Saltzman, Arneet L.; Kim, Yoon Ki; Pan, Qun; Fagnani, Matthew M.; Maquat, Lynne E.; Blencowe, Benjamin J. (2008-04-28). "Regulation of Multiple Core Spliceosomal Proteins by Alternative Splicing-Coupled Nonsense-Mediated mRNA Decay". Molecular and Cellular Biology. 28 (13): 4320. doi:10.1128/MCB.00361-08. PMC 2447145. PMID 18443041.
  9. ^ a b Lin, Julie Qiaojin; Khuperkar, Deepak; Pavlou, Sofia; Makarchuk, Stanislaw; Patikas, Nikolaos; Lee, Flora CY; Zbiegly, Julia M; Kang, Jianning; Field, Sarah F; Bailey, David MD; Freeman, Joshua L; Ule, Jernej; Metzakopian, Emmanouil; Ruepp, Marc-David; Mallucci, Giovanna R (2023-07-17). "HNRNPH1 regulates the neuroprotective cold-shock protein RBM3 expression through poison exon exclusion". The EMBO Journal. 42 (14). doi:10.15252/embj.2022113168. ISSN 0261-4189. PMC 10350819. PMID 37248947.
  10. ^ Kalyna, Maria; Simpson, Craig G.; Syed, Naeem H.; Lewandowska, Dominika; Marquez, Yamile; Kusenda, Branislav; Marshall, Jacqueline; Fuller, John; Cardle, Linda; McNicol, Jim; Dinh, Huy Q.; Barta, Andrea; Brown, John W. S. (March 2012). "Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis". Nucleic Acids Research. 40 (6): 2454–2469. doi:10.1093/nar/gkr932. ISSN 1362-4962. PMC 3315328. PMID 22127866.
  11. ^ Stoilov, P. (2004-01-06). "Human tra2-beta1 autoregulates its protein concentration by influencing alternative splicing of its pre-mRNA". Human Molecular Genetics. 13 (5): 509–524. doi:10.1093/hmg/ddh051. ISSN 1460-2083. PMID 14709600.
  12. ^ a b Belleville, Andrea E.; Thomas, James D.; Tonnies, Jackson; Gabel, Austin M.; Borrero Rossi, Andrea; Singh, Priti; Queitsch, Christine; Bradley, Robert K. (2024-08-16). Copenhaver, Gregory P. (ed.). "An autoregulatory poison exon in Smndc1 is conserved across kingdoms and influences organism growth". PLOS Genetics. 20 (8): e1011363. doi:10.1371/journal.pgen.1011363. ISSN 1553-7404. PMC 11357089. PMID 39150991.
  13. ^ Wollerton, Matthew C; Gooding, Clare; Wagner, Eric J; Garcia-Blanco, Mariano A; Smith, Christopher W.J (January 2004). "Autoregulation of Polypyrimidine Tract Binding Protein by Alternative Splicing Leading to Nonsense-Mediated Decay". Molecular Cell. 13 (1): 91–100. doi:10.1016/S1097-2765(03)00502-1. PMID 14731397.
  14. ^ Pimentel, Harold; Parra, Marilyn; Gee, Sherry; Ghanem, Dana; An, Xiuli; Li, Jie; Mohandas, Narla; Pachter, Lior; Conboy, John G. (2014-01-17). "A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis". Nucleic Acids Research. 42 (6): 4031. doi:10.1093/nar/gkt1388. PMC 3973340. PMID 24442673.
  15. ^ a b c d e Leclair, Nathan K.; Brugiolo, Mattia; Urbanski, Laura; Lawson, Shane C.; Thakar, Ketan; Yurieva, Marina; George, Joshy; Hinson, John Travis; Cheng, Albert; Graveley, Brenton R.; Anczuków, Olga (November 2020). "Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression during Differentiation and Tumorigenesis". Molecular Cell. 80 (4): 648–665.e9. doi:10.1016/j.molcel.2020.10.019. PMC 7680420. PMID 33176162.
  16. ^ de Oliveira Freitas Machado, Camila; Schafranek, Michal; Brüggemann, Mirko; Hernández Cañás, María Clara; Keller, Mario; Di Liddo, Antonella; Brezski, Andre; Blümel, Nicole; Arnold, Benjamin; Bremm, Anja; Wittig, Ilka; Jaé, Nicolas; McNicoll, François; Dimmeler, Stefanie; Zarnack, Kathi (2023-01-25). "Poison cassette exon splicing of SRSF6 regulates nuclear speckle dispersal and the response to hypoxia". Nucleic Acids Research. 51 (2): 870–890. doi:10.1093/nar/gkac1225. ISSN 0305-1048. PMC 9881134. PMID 36620874.
  17. ^ a b Thomas, James D.; Polaski, Jacob T.; Feng, Qing; De Neef, Emma J.; Hoppe, Emma R.; McSharry, Maria V.; Pangallo, Joseph; Gabel, Austin M.; Belleville, Andrea E.; Watson, Jacqueline; Nkinsi, Naomi T.; Berger, Alice H.; Bradley, Robert K. (January 2020). "RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons". Nature Genetics. 52 (1): 84–94. doi:10.1038/s41588-019-0555-z. ISSN 1546-1718. PMC 6962552. PMID 31911676.
  18. ^ Karginov, Timofey A.; Ménoret, Antoine; Leclair, Nathan K.; Harrison, Andrew G.; Chandiran, Karthik; Suarez-Ramirez, Jenny E.; Yurieva, Marina; Karlinsey, Keaton; Wang, Penghua; O’Neill, Rachel J.; Murphy, Patrick A.; Adler, Adam J.; Cauley, Linda S.; Anczuków, Olga; Zhou, Beiyan (2024-09-13). "Autoregulated splicing of TRA2 β programs T cell fate in response to antigen-receptor stimulation". Science. 385 (6714): eadj1979. Bibcode:2024Sci...385j1979K. doi:10.1126/science.adj1979. ISSN 0036-8075. PMID 39265028.
  19. ^ Harada, Naoya; Asada, Shuhei; Jiang, Lige; Nguyen, Huy; Moreau, Lisa; Marina, Ryan J.; Adelman, Karen; Iyer, Divya R.; D’Andrea, Alan D. (July 2024). "The splicing factor CCAR1 regulates the Fanconi anemia/BRCA pathway". Molecular Cell. 84 (14): 2618–2633.e10. doi:10.1016/j.molcel.2024.06.031. PMC 11321822. PMID 39025073.
  20. ^ a b Inoue, Daichi; Chew, Guo-Liang; Liu, Bo; Michel, Brittany C.; Pangallo, Joseph; D’Avino, Andrew R.; Hitchman, Tyler; North, Khrystyna; Lee, Stanley Chun-Wei; Bitner, Lillian; Block, Ariele; Moore, Amanda R.; Yoshimi, Akihide; Escobar-Hoyos, Luisa; Cho, Hana (2019-10-09). "Spliceosomal disruption of the non-canonical BAF complex in cancer". Nature. 574 (7778): 432. Bibcode:2019Natur.574..432I. doi:10.1038/s41586-019-1646-9. PMC 6858563. PMID 31597964.
  21. ^ a b Carvill, Gemma L.; Engel, Krysta L.; Ramamurthy, Aishwarya; Cochran, J. Nicholas; Roovers, Jolien; Stamberger, Hannah; Lim, Nicholas; Schneider, Amy L.; Hollingsworth, Georgie; Holder, Dylan H.; Regan, Brigid M.; Lawlor, James; Lagae, Lieven; Ceulemans, Berten; Bebin, E. Martina (December 2018). "Aberrant Inclusion of a Poison Exon Causes Dravet Syndrome and Related SCN1A-Associated Genetic Epilepsies". The American Journal of Human Genetics. 103 (6): 1022–1029. doi:10.1016/j.ajhg.2018.10.023. PMC 6288405. PMID 30526861.
  22. ^ a b Voskobiynyk, Yuliya; Battu, Gopal; Felker, Stephanie A.; Cochran, J. Nicholas; Newton, Megan P.; Lambert, Laura J.; Kesterson, Robert A.; Myers, Richard M.; Cooper, Gregory M.; Roberson, Erik D.; Barsh, Gregory S. (2021-01-07). Shieh, Joseph (ed.). "Aberrant regulation of a poison exon caused by a non-coding variant in a mouse model of Scn1a-associated epileptic encephalopathy". PLOS Genetics. 17 (1): e1009195. doi:10.1371/journal.pgen.1009195. ISSN 1553-7404. PMC 7790302. PMID 33411788.
  23. ^ Eom, Taesun; Zhang, Chaolin; Wang, Huidong; Lay, Kenneth; Fak, John; Noebels, Jeffrey L; Darnell, Robert B (2013-01-22). "NOVA-dependent regulation of cryptic NMD exons controls synaptic protein levels after seizure". eLife. 2. doi:10.7554/eLife.00178. ISSN 2050-084X. PMC 3552424. PMID 23359859.
  24. ^ Sheridan, Cormac (2024-08-01). "A new class of mRNA drugs targets poison exons". Nature Biotechnology. 42 (8): 1159–1161. doi:10.1038/s41587-024-02355-4. ISSN 1546-1696. PMID 39143167.
  25. ^ a b c Prajapati, Sudeep; Cameron, Michael; Dunyak, Bryan M.; Shan, Mengge; Siu, Y. Amy; Levin-Furtney, Samantha; Powe, Joshua; Burchfiel, Eileen T.M.; Cabral, Sarah E.; Harney, Alycen M.; Keenan, Regina K.; Larpenteur, Kevin M.; Maag, Jesper L.V.; Snyder, Andrew R.; Nguyen, Dan T. (2023-11-02). "REM-422, a Potent, Selective, Oral Small Molecule mRNA Degrader of the MYB Oncogene, Demonstrates Anti-Tumor Activity in Mouse Xenograft Models of AML". Blood. 142 (Supplement 1): 1425. doi:10.1182/blood-2023-182676. ISSN 0006-4971.
  26. ^ a b Bhattacharyya, Anuradha; Trotta, Christopher R.; Narasimhan, Jana; Wiedinger, Kari J.; Li, Wencheng; Effenberger, Kerstin A.; Woll, Matthew G.; Jani, Minakshi B.; Risher, Nicole; Yeh, Shirley; Cheng, Yaofeng; Sydorenko, Nadiya; Moon, Young-Choon; Karp, Gary M.; Weetall, Marla (2021-12-15). "Small molecule splicing modifiers with systemic HTT-lowering activity". Nature Communications. 12 (1): 7299. Bibcode:2021NatCo..12.7299B. doi:10.1038/s41467-021-27157-z. ISSN 2041-1723. PMC 8674292. PMID 34911927.
  27. ^ a b c Lim, Kian Huat; Han, Zhou; Jeon, Hyun Yong; Kach, Jacob; Jing, Enxuan; Weyn-Vanhentenryck, Sebastien; Downs, Mikaela; Corrionero, Anna; Oh, Raymond; Scharner, Juergen; Venkatesh, Aditya; Ji, Sophina; Liau, Gene; Ticho, Barry; Nash, Huw (2020-07-09). "Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression". Nature Communications. 11 (1): 3501. Bibcode:2020NatCo..11.3501L. doi:10.1038/s41467-020-17093-9. ISSN 2041-1723. PMC 7347940. PMID 32647108.
  28. ^ Campagne, Sébastien; Boigner, Sarah; Rüdisser, Simon; Moursy, Ahmed; Gillioz, Laurent; Knörlein, Anna; Hall, Jonathan; Ratni, Hasane; Cléry, Antoine; Allain, Frédéric H.-T. (December 2019). "Structural basis of a small molecule targeting RNA for a specific splicing correction". Nature Chemical Biology. 15 (12): 1191–1198. doi:10.1038/s41589-019-0384-5. ISSN 1552-4450. PMID 31636429.
  29. ^ a b Preußner, Marco; Smith, Heather L; Hughes, Daniel; Zhang, Min; Emmerichs, Ann-Kathrin; Scalzitti, Silvia; Peretti, Diego; Swinden, Dean; Neumann, Alexander; Haltenhof, Tom; Mallucci, Giovanna R; Heyd, Florian (2023-05-08). "ASO targeting RBM3 temperature-controlled poison exon splicing prevents neurodegeneration in vivo". EMBO Molecular Medicine. 15 (5). doi:10.15252/emmm.202217157. ISSN 1757-4676. PMC 10165353. PMID 36946385.
  30. ^ a b Havens, Mallory A.; Hastings, Michelle L. (2016-06-10). "Splice-switching antisense oligonucleotides as therapeutic drugs". Nucleic Acids Research. 44 (14): 6549. doi:10.1093/nar/gkw533. PMC 5001604. PMID 27288447.
  31. ^ Isom, Lori L.; Knupp, Kelly G. (July 2021). "Dravet Syndrome: Novel Approaches for the Most Common Genetic Epilepsy". Neurotherapeutics. 18 (3): 1524–1534. doi:10.1007/s13311-021-01095-6. PMC 8608987. PMID 34378168.
  32. ^ Han, Zhou; Chen, Chunling; Christiansen, Anne; Ji, Sophina; Lin, Qian; Anumonwo, Charles; Liu, Chante; Leiser, Steven C.; Meena; Aznarez, Isabel; Liau, Gene; Isom, Lori L. (2020-08-26). "Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome". Science Translational Medicine. 12 (558). doi:10.1126/scitranslmed.aaz6100. ISSN 1946-6234. PMID 32848094.
  33. ^ Wengert, Eric R.; Wagley, Pravin K.; Strohm, Samantha M.; Reza, Nuha; Wenker, Ian C.; Gaykema, Ronald P.; Christiansen, Anne; Liau, Gene; Patel, Manoj K. (January 2022). "Targeted Augmentation of Nuclear Gene Output (TANGO) of Scn1a rescues parvalbumin interneuron excitability and reduces seizures in a mouse model of Dravet Syndrome". Brain Research. 1775: 147743. doi:10.1016/j.brainres.2021.147743. PMID 34843701.
  34. ^ "An Open-Label Extension Study of STK-001 for Patients With Dravet Syndrome".
  35. ^ Venkatesh, Aditya; McKenty, Taylor; Ali, Syed; Sonntag, Donna; Ravipaty, Shobha; Cui, Yanyan; Slate, Deirdre; Lin, Qian; Christiansen, Anne; Jacobson, Sarah; Kach, Jacob; Lim, Kian Huat; Srinivasan, Vaishnavi; Zinshteyn, Boris; Aznarez, Isabel (2024-10-01). "Antisense Oligonucleotide STK-002 Increases OPA1 in Retina and Improves Mitochondrial Function in Autosomal Dominant Optic Atrophy Cells". Nucleic Acid Therapeutics. 34 (5): 221–233. doi:10.1089/nat.2024.0022. ISSN 2159-3337. PMID 39264859.
  36. ^ "Study of REM-422 in Patients With Recurrent or Metastatic Adenoid Cystic Carcinoma".
  37. ^ "Study of REM-422 in Patients With AML or Higher Risk MDS".
  38. ^ Naryshkin, Nikolai A.; Weetall, Marla; Dakka, Amal; Narasimhan, Jana; Zhao, Xin; Feng, Zhihua; Ling, Karen K. Y.; Karp, Gary M.; Qi, Hongyan; Woll, Matthew G.; Chen, Guangming; Zhang, Nanjing; Gabbeta, Vijayalakshmi; Vazirani, Priya; Bhattacharyya, Anuradha (2014-08-08). "SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy". Science. 345 (6197): 688–693. Bibcode:2014Sci...345..688N. doi:10.1126/science.1250127. ISSN 0036-8075. PMID 25104390.
  39. ^ Ratni, Hasane; Ebeling, Martin; Baird, John; Bendels, Stefanie; Bylund, Johan; Chen, Karen S.; Denk, Nora; Feng, Zhihua; Green, Luke; Guerard, Melanie; Jablonski, Philippe; Jacobsen, Bjoern; Khwaja, Omar; Kletzl, Heidemarie; Ko, Chien-Ping (2018-08-09). "Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 ( SMN2 ) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA)". Journal of Medicinal Chemistry. 61 (15): 6501–6517. doi:10.1021/acs.jmedchem.8b00741. ISSN 0022-2623. PMID 30044619.
  40. ^ Fair, Benjamin; Buen Abad Najar, Carlos F.; Zhao, Junxing; Lozano, Stephanie; Reilly, Austin; Mossian, Gabriela; Staley, Jonathan P.; Wang, Jingxin; Li, Yang I. (September 2024). "Global impact of unproductive splicing on human gene expression". Nature Genetics. 56 (9): 1851–1861. doi:10.1038/s41588-024-01872-x. ISSN 1546-1718.
  41. ^ "A Study to Evaluate the Safety and Efficacy of PTC518 in Participants With Huntington's Disease (HD)".
  42. ^ Yang, Runwei; Feng, Xinran; Arias-Cavieres, Alejandra; Mitchell, Robin M.; Polo, Ashleigh; Hu, Kaining; Zhong, Rong; Qi, Cai; Zhang, Rachel S.; Westneat, Nathaniel; Portillo, Cristabel A.; Nobrega, Marcelo A.; Hansel, Christian; Garcia III, Alfredo J.; Zhang, Xiaochang (May 2023). "Upregulation of SYNGAP1 expression in mice and human neurons by redirecting alternative splicing". Neuron. 111 (10): 1637–1650.e5. doi:10.1016/j.neuron.2023.02.021. PMC 10198817. PMID 36917980.
  43. ^ Kim, Young Jin; Sivetz, Nicole; Layne, Jessica; Voss, Dillon M.; Yang, Lucia; Zhang, Qian; Krainer, Adrian R. (2022-01-18). "Exon-skipping antisense oligonucleotides for cystic fibrosis therapy". Proceedings of the National Academy of Sciences. 119 (3). Bibcode:2022PNAS..11914858K. doi:10.1073/pnas.2114858118. ISSN 0027-8424. PMC 8784140. PMID 35017301.