In algebra, given a 2-monad T in a 2-category, a pseudoalgebra for T is a 2-category-version of algebra for T, that satisfies the laws up to coherent isomorphisms.[1]
See also
editNotes
edit- ^ Shulman, Michael A. (2012). "Not every pseudoalgebra is equivalent to a strict one". Advances in Mathematics. 229 (3): 2024–2041. arXiv:1005.1520. doi:10.1016/j.aim.2011.01.010.
References
edit- Lack, Stephen (2000). "A Coherent Approach to Pseudomonads". Advances in Mathematics. 152 (2): 179–202. doi:10.1006/aima.1999.1881.
Further reading
edit- Baez, John C.; May, J. Peter, eds. (2010). Towards higher categories. The IMA Volumes in Mathematics and its Applications. Vol. 152. Springer, New York. doi:10.1007/978-1-4419-1524-5. ISBN 978-1-4419-1523-8.
External links
edit- https://ncatlab.org/nlab/show/pseudoalgebra+for+a+2-monad
- https://golem.ph.utexas.edu/category/2014/06/codescent_objects_and_coherenc.html