In mathematics, the q-Racah polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Askey & Wilson (1979). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Definition

edit

The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by

 

They are sometimes given with changes of variables as

 

Relation to other polynomials

edit

q-Racah polynomials→Racah polynomials

References

edit
  • Askey, Richard; Wilson, James (1979), "A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols", SIAM Journal on Mathematical Analysis, 10 (5): 1008–1016, doi:10.1137/0510092, ISSN 0036-1410, MR 0541097, archived from the original on September 25, 2017
  • Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
  • Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18: Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.