Riboflavin-responsive exercise intolerance

Riboflavin-responsive exercise intolerance (SLC25A32 deficiency) is a rare disorder caused by mutations of the SLC25A32 gene that encodes the mitochondrial folate transporter. Patients suffer from exercise intolerance and may have disrupted motor function.

Riboflavin-responsive exercise intolerance

A positive correlation between SLC25A32 dysfunction and flavoenzyme deficiency has been observed suggesting that SLC25A32 is in fact a mitochondrial FAD transporter. In mice studies, besides β-oxidation and amino acid metabolism being impaired by mitochondrial FAD deficiency, Slc25a32 wipeout embryos experienced dysfunction of the glycine cleavage system– dihydrolipoamide dehydrogenase. This dihydrolipoamide dehydrogenase dysfunction disrupted folate-mediated one-carbon metabolism, leading a deficiency of 5-methyltetrahydrofolate.[1]

Symptoms and signs

edit

Patients suffer from exercise intolerance and may also have neuromuscular symptoms such as ataxia, dysarthia and muscle weakness. Staining of skeletal muscle samples with hematoxylin and eosin may reveal the ragged red fibers sign indicating disrupted mitochondrial function. In some patients, hypoketotic hypoglycemia was described.[2]

Cause

edit

Treatment

edit

Treatment with riboflavin, 5-formyltetrahydrofolate (Folinic acid) and/or L-5-methyltetrahydrofolate (5-MTHF) may lead to a drastic improvement of symptoms. Pyridoxal - 5 - Phosphate (P5P), a cofactor for the enzyme Serine hydroxymethyltransferase, may also assist with the conversion of tetrahydrofolate (THF) to 5,10-Methylenetetrahydrofolate (5,10-CH2-THF) a direct precursor to L-5-methyltetrahydrofolate (5-MTHF).

History

edit

Riboflavin - responsive exercise intolerance was first described in 2016 by Schiff et al.[3]

See also

edit

References

edit
  1. ^ Peng, Min-Zhi; Shao, Yong-Xian; Li, Xiu-Zhen; Zhang, Kang-Di; Cai, Yan-Na; Lin, Yun-Ting; Jiang, Min-Yan; Liu, Zong-Cai; Su, Xue-Ying; Zhang, Wen; Jiang, Xiao-Ling; Liu, Li (2022-06-21). "Mitochondrial FAD shortage in SLC25A32 deficiency affects folate-mediated one-carbon metabolism". Cellular and Molecular Life Sciences. 79 (7): 375. doi:10.1007/s00018-022-04404-0. ISSN 1420-9071. PMC 11072207. PMID 35727412. S2CID 249885944.
  2. ^ Al Shamsi B, Al Murshedi F, Al Habsi A, Al-Thihli K (November 2021). "Hypoketotic hypoglycemia without neuromuscular complications in patients with SLC25A32 deficiency". European Journal of Human Genetics. 30 (8): 976–979. doi:10.1038/s41431-021-00995-7. PMC 9349259. PMID 34764427.
  3. ^ Schiff M, Veauville-Merllié A, Su CH, Tzagoloff A, Rak M, Ogier de Baulny H, Boutron A, Smedts-Walters H, Romero NB, Rigal O, Rustin P, Vianey-Saban C, Acquaviva-Bourdain C (February 2016). "SLC25A32 Mutations and Riboflavin-Responsive Exercise Intolerance". The New England Journal of Medicine. 374 (8): 795–7. doi:10.1056/NEJMc1513610. PMC 4867164. PMID 26933868.
edit