The sarcoglycans are a family of transmembrane proteins[1] (α, β, γ, δ or ε) involved in the protein complex responsible for connecting the muscle fibre cytoskeleton to the extracellular matrix, preventing damage to the muscle fibre sarcolemma through shearing forces.

Sarcoglycan beta/gamma/delta
Identifiers
SymbolSarcoglycan_1
PfamPF04790
InterProIPR006875
Membranome117
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Sarcoglycan alpha/epsilon
Identifiers
SymbolSarcoglycan_2
PfamPF05510
InterProIPR008908
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

The dystrophin glycoprotein complex (DGC) is a membrane-spanning complex that links the interior cytoskeleton to the extracellular matrix in muscle. The sarcoglycan complex is a subcomplex within the DGC and is composed of six muscle-specific, transmembrane proteins (alpha-, beta-, gamma-, delta-, epsilon-,and zeta-sarcoglycan).[2] The sarcoglycans are asparagine-linked glycosylated proteins with single transmembrane domains.[3][4]

The disorders caused by the mutations of the sarcoglycans are called sarcoglycanopathies. Mutations in the α, β, γ or δ genes (not ε) encoding these proteins can lead to the associated limb-girdle muscular dystrophy.

Genes

edit

References

edit
  1. ^ Sarcoglycans at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  2. ^ "SGCZ sarcoglycan zeta [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 1 December 2021.
  3. ^ Chockalingam PS, Cholera R, Oak SA, Zheng Y, Jarrett HW, Thomason DB (August 2002). "Dystrophin-glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy". American Journal of Physiology. Cell Physiology. 283 (2): C500-11. doi:10.1152/ajpcell.00529.2001. PMID 12107060.
  4. ^ Wheeler MT, Zarnegar S, McNally EM (September 2002). "Zeta-sarcoglycan, a novel component of the sarcoglycan complex, is reduced in muscular dystrophy". Human Molecular Genetics. 11 (18): 2147–54. doi:10.1093/hmg/11.18.2147. PMID 12189167.
This article incorporates text from the public domain Pfam and InterPro: IPR006875