This article needs additional citations for verification. (July 2022) |
Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops.
Using the well-known observation that
Julian Schwinger noticed that one may simplify the integral:
for Re(n)>0.
Another version of Schwinger parametrization is:
which is convergent as long as and .[1] It is easy to generalize this identity to n denominators.
See also
editReferences
edit- ^ Schwartz, M. D. (2014). "33". Quantum Field Theory and the Standard Model (9 ed.). Cambridge University Press. p. 705. ISBN 9781107034730.