The Shuram excursion, or Shuram-Wonoka excursion, is a change in δ13C, or in the ratio of carbon-13 to carbon-12, taking place during the Ediacaran Period. The exact time period of the excursion is debated among scholars, beginning around 573 Ma and ending around 562[1] or 551[2] Ma. It was first noticed in the Wonoka Formation in South Australia in 1990 and later in the Clemente Formation of Mexico in 1992 [3] and the Shuram Formation in Oman in 1993.[4] It is the largest negative δ13C excursion in Earth history, and recovery took 50 million years,[5] although the apparent magnitude of the excursion may be distorted due to meteoric water diagenesis.[6]
It is not known what caused the excursion.[7] The Shuram excursion may have played a role in sparking the rise of animals that resulted later in the Cambrian explosion.[8] The oxygen-consuming Ediacara biota experienced a radiation during the isotopic excursion as a response to the transient surplus of oxidants.[9] Microbial blooms of oxygenic phototrophs regulated the recovery of the carbon cycle from the isotopic excursion.[10]
References
edit- ^ Canfield, Donald Eugene; Knoll, Andrew H.; Poulton, Simon W.; Narbonne, Guy M.; Dunning, Gregory R. (February 2020). "Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle". American Journal of Science. 320 (2): 97–124. Bibcode:2020AmJS..320...97C. doi:10.2475/02.2020.01. S2CID 214806821. Retrieved 12 March 2023.
- ^ Shi, Wei; Li, Chao; Luo, Genming; Huang, Junhua; Algeo, Thomas J.; Jin, Chengsheng; Zhang, Zihu; Cheng, Meng (24 January 2018). "Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion". Geology. 46 (3): 267–270. Bibcode:2018Geo....46..267S. doi:10.1130/G39663.1.
- ^ McMenamin, M.A.S; Rowland, S.M.; Corsetti, F.; Dix, A.M.; Nance, R.P. (1992). "Vendian body fossils (?) and isotope stratigraphy from the Caborca area, Sonora, Mexico". Fifth North American Paleontological Convention Abstracts and Program, Paleontological Society Special Publication. 5: 206.
- ^ George Williams and Phillip Schmidt (March 2018). "Shuram–Wonoka carbon isotope excursion: Ediacaran revolution in the world ocean's meridional overturning circulation". Geoscience Frontiers. 9 (2): 391–402. Bibcode:2018GeoFr...9..391W. doi:10.1016/j.gsf.2017.11.006.
- ^ Erwan Le Guerroué; et al. (20 April 2006). "Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram Formation (Nafun Group, Oman)". Precambrian Research. 146 (1–2): 68–92. Bibcode:2006PreR..146...68L. doi:10.1016/j.precamres.2006.01.007. Retrieved 12 March 2023.
- ^ Cui, Huan (15 September 2022). "Ediacaran Shuram Excursion interpreted, reinterpreted, and misinterpreted: A comment". Precambrian Research. 380: 106826. Bibcode:2022PreR..38006826C. doi:10.1016/j.precamres.2022.106826. Retrieved 18 December 2023 – via Elsevier Science Direct.
- ^ Wei, Guang-Yi; Wang, Jiuyuan; Planavsky, Noah J.; Zhao, Mingyu; Bolton, Edward W.; Jiang, Lei; Asael, Dan; Wei, Wei; Ling, Hong-Fei (1 July 2022). "On the origin of Shuram carbon isotope excursion in South China and its implication for Ediacaran atmospheric oxygen levels". Precambrian Research. 375: 106673. Bibcode:2022PreR..37506673W. doi:10.1016/j.precamres.2022.106673. S2CID 248115031.
- ^ Colin Barras (Nov 9, 2019). "The weird creatures that might be the very first complex animals". New Scientist.
- ^ Shields, Graham A.; Mills, Benjamin J. W.; Zhu, Maoyan; Raub, Timothy D.; Daines, Stuart J.; Lenton, Timothy M. (2 September 2019). "Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial". Nature Geoscience. 12 (10): 823–827. Bibcode:2019NatGe..12..823S. doi:10.1038/s41561-019-0434-3. hdl:10871/39006. S2CID 201827639. Retrieved 12 January 2023.
- ^ Cañadas, Fuencisla; Papineau, Dominic; Leng, Melanie J.; Li, Chao (10 January 2022). "Extensive primary production promoted the recovery of the Ediacaran Shuram excursion". Nature Communications. 13 (1): 148. Bibcode:2022NatCo..13..148C. doi:10.1038/s41467-021-27812-5. PMC 8748710. PMID 35013337.