Sine-triple-angle circle

In triangle geometry, the sine-triple-angle circle is one of a circle of the triangle.[1][2] Let A1 and A2 points on BC , a side of triangle ABC . And, define B1, B2, C1 and C2 similarly for CA and AB. If

Sine-Triple-Angle Circle

and

then A1, A2, B1, B2, C1 and C2 lie on a circle called the sine-triple-angle circle.[3] At first, Tucker and Neuberg called the circle "cercle triplicateur".[4]

Properties

edit

 

where R is the circumradius of triangle ABC.

Center

edit

The center of sine-triple-angle circle is a triangle center designated as X(49) in Encyclopedia of Triangle Centers.[7][9] The trilinear coordinates of X(49) is

 .

Generalization

edit

For natural number n>0, if

 

 

and

 

then A1, A2, B1, B2, C1 and C2 are concyclic.[8] Sine-triple-angle circle is the special case in n=2.

Also,

 .

See also

edit

References

edit
  1. ^ Mathworld,Weisstein, Eric W
  2. ^ Society, London Mathematical (1893). Proceedings of the London Mathematical Society. Oxford University Press. p. 162.
  3. ^ The Messenger of Mathematics. Macmillan and Company. 1887. p. 125.
  4. ^ Mathesis (in French). Vol. 7. Johnson Reprint Corporation. 1964.
  5. ^ Thebault (1956)
  6. ^ Ehrmann and van Lamoen (2002)
  7. ^ a b "Clark Kimberling's rightri Encyclopedia of Triangle Centers - ETC".
  8. ^ a b Mathematical Questions and Solutions. F. Hodgson. 1887. p. 139.
  9. ^ Congressus Numerantium. Utilitas Mathematica Pub. Incorporated. 1970.
edit