Solar eclipse of December 24, 1973

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, December 24, 1973,[1] with a magnitude of 0.9174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.25 days before apogee (on December 25, 1973, at 21:30 UTC), the Moon's apparent diameter was smaller.[2]

Solar eclipse of December 24, 1973
Map
Type of eclipse
NatureAnnular
Gamma0.4171
Magnitude0.9174
Maximum eclipse
Duration722 s (12 min 2 s)
Coordinates1°06′N 48°30′W / 1.1°N 48.5°W / 1.1; -48.5
Max. width of band345 km (214 mi)
Times (UTC)
Greatest eclipse15:02:44
References
Saros141 (21 of 70)
Catalog # (SE5000)9451

The duration of annularity at maximum eclipse (closest to but slightly shorter than the longest duration) was 12 minutes, 2.37 seconds in the Atlantic Ocean near the Brazilian coast. It was the longest annular solar eclipse until January 14, 3080, but the Solar eclipse of December 14, 1955 lasted longer.[3]

Annularity was visible from southern Mexico, southwestern Nicaragua, Costa Rica including the capital city San José, Panama, Colombia including the capital city Bogotá, southern Venezuela, Brazil, southern Guyana, southern Dutch Guiana (today's Suriname), southern French Guiana, Portuguese Cape Verde (today's Cape Verde) including the capital city Praia, Mauritania including the capital city Nouakchott, Spanish Sahara (today's Western Sahara), Mali, and Algeria. A partial eclipse was visible for parts of eastern North America, Central America, the Caribbean, northern and central South America, Western Europe, and West Africa.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[4]

December 24, 1973 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1973 December 24 at 12:01:48.2 UTC
First Umbral External Contact 1973 December 24 at 13:10:43.7 UTC
First Central Line 1973 December 24 at 13:14:29.7 UTC
First Umbral Internal Contact 1973 December 24 at 13:18:17.1 UTC
First Penumbral Internal Contact 1973 December 24 at 14:54:55.3 UTC
Greatest Duration 1973 December 24 at 14:57:39.1 UTC
Greatest Eclipse 1973 December 24 at 15:02:43.5 UTC
Ecliptic Conjunction 1973 December 24 at 15:07:45.5 UTC
Equatorial Conjunction 1973 December 24 at 15:08:46.6 UTC
Last Penumbral Internal Contact 1973 December 24 at 15:10:21.8 UTC
Last Umbral Internal Contact 1973 December 24 at 16:47:05.3 UTC
Last Central Line 1973 December 24 at 16:50:53.5 UTC
Last Umbral External Contact 1973 December 24 at 16:54:40.4 UTC
Last Penumbral External Contact 1973 December 24 at 18:03:38.0 UTC
December 24, 1973 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.91745
Eclipse Obscuration 0.84171
Gamma 0.41710
Sun Right Ascension 18h11m38.6s
Sun Declination -23°24'56.0"
Sun Semi-Diameter 16'15.7"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 18h11m26.8s
Moon Declination -23°02'37.9"
Moon Semi-Diameter 14'43.0"
Moon Equatorial Horizontal Parallax 0°54'00.7"
ΔT 44.5 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 1973
December 10
Descending node (full moon)
December 24
Ascending node (new moon)
   
Partial lunar eclipse
Lunar Saros 115
Annular solar eclipse
Solar Saros 141
edit

Eclipses in 1973

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 141

edit

Inex

edit

Triad

edit

Solar eclipses of 1971–1974

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The partial solar eclipses on February 25, 1971 and August 20, 1971 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1971 to 1974
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
116 July 22, 1971
 
Partial
1.513 121 January 16, 1972
 
Annular
−0.9365
126 July 10, 1972
 
Total
0.6872 131 January 4, 1973
 
Annular
−0.2644
136 June 30, 1973
 
Total
−0.0785 141 December 24, 1973
 
Annular
0.4171
146 June 20, 1974
 
Total
−0.8239 151 December 13, 1974
 
Partial
1.0797

Saros 141

edit

This eclipse is a part of Saros series 141, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 19, 1613. It contains annular eclipses from August 4, 1739 through October 14, 2640. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on June 13, 2857. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 20 at 12 minutes, 9 seconds on December 14, 1955. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]

Series members 12–33 occur between 1801 and 2200:
12 13 14
 
September 17, 1811
 
September 28, 1829
 
October 9, 1847
15 16 17
 
October 19, 1865
 
October 30, 1883
 
November 11, 1901
18 19 20
 
November 22, 1919
 
December 2, 1937
 
December 14, 1955
21 22 23
 
December 24, 1973
 
January 4, 1992
 
January 15, 2010
24 25 26
 
January 26, 2028
 
February 5, 2046
 
February 17, 2064
27 28 29
 
February 27, 2082
 
March 10, 2100
 
March 22, 2118
30 31 32
 
April 1, 2136
 
April 12, 2154
 
April 23, 2172
33
 
May 4, 2190

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 24, 1916 and July 31, 2000
December 24–25 October 12 July 31–August 1 May 19–20 March 7
111 113 115 117 119
 
December 24, 1916
 
July 31, 1924
 
May 19, 1928
 
March 7, 1932
121 123 125 127 129
 
December 25, 1935
 
October 12, 1939
 
August 1, 1943
 
May 20, 1947
 
March 7, 1951
131 133 135 137 139
 
December 25, 1954
 
October 12, 1958
 
July 31, 1962
 
May 20, 1966
 
March 7, 1970
141 143 145 147 149
 
December 24, 1973
 
October 12, 1977
 
July 31, 1981
 
May 19, 1985
 
March 7, 1989
151 153 155
 
December 24, 1992
 
October 12, 1996
 
July 31, 2000

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
April 4, 1810
(Saros 126)
 
March 4, 1821
(Saros 127)
 
February 1, 1832
(Saros 128)
 
December 31, 1842
(Saros 129)
 
November 30, 1853
(Saros 130)
 
October 30, 1864
(Saros 131)
 
September 29, 1875
(Saros 132)
 
August 29, 1886
(Saros 133)
 
July 29, 1897
(Saros 134)
 
June 28, 1908
(Saros 135)
 
May 29, 1919
(Saros 136)
 
April 28, 1930
(Saros 137)
 
March 27, 1941
(Saros 138)
 
February 25, 1952
(Saros 139)
 
January 25, 1963
(Saros 140)
 
December 24, 1973
(Saros 141)
 
November 22, 1984
(Saros 142)
 
October 24, 1995
(Saros 143)
 
September 22, 2006
(Saros 144)
 
August 21, 2017
(Saros 145)
 
July 22, 2028
(Saros 146)
 
June 21, 2039
(Saros 147)
 
May 20, 2050
(Saros 148)
 
April 20, 2061
(Saros 149)
 
March 19, 2072
(Saros 150)
 
February 16, 2083
(Saros 151)
 
January 16, 2094
(Saros 152)
 
December 17, 2104
(Saros 153)
 
November 16, 2115
(Saros 154)
 
October 16, 2126
(Saros 155)
 
September 15, 2137
(Saros 156)
 
August 14, 2148
(Saros 157)
 
July 15, 2159
(Saros 158)
 
June 14, 2170
(Saros 159)
 
May 13, 2181
(Saros 160)
 
April 12, 2192
(Saros 161)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
April 3, 1829
(Saros 136)
 
March 15, 1858
(Saros 137)
 
February 22, 1887
(Saros 138)
 
February 3, 1916
(Saros 139)
 
January 14, 1945
(Saros 140)
 
December 24, 1973
(Saros 141)
 
December 4, 2002
(Saros 142)
 
November 14, 2031
(Saros 143)
 
October 24, 2060
(Saros 144)
 
October 4, 2089
(Saros 145)
 
September 15, 2118
(Saros 146)
 
August 26, 2147
(Saros 147)
 
August 4, 2176
(Saros 148)

Notes

edit
  1. ^ "December 24, 1973 Annular Solar Eclipse". timeanddate. Retrieved 8 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 8 August 2024.
  3. ^ "Annular Solar Eclipses with Durations Exceeding 11m 00s: -3999 to 6000". NASA Eclipse Web Site.
  4. ^ "Annular Solar Eclipse of 1973 Dec 24". EclipseWise.com. Retrieved 8 August 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Solar Eclipses of Saros 141". eclipse.gsfc.nasa.gov.

References

edit