In neuroanatomy, a sulcus (Latin: "furrow"; ‹The template Plural form is being considered for merging.› pl.: sulci) is a shallow depression or groove in the cerebral cortex. One or more sulci surround a gyrus (pl. gyri), a ridge on the surface of the cortex, creating the characteristic folded appearance of the brain in humans and most other mammals. The larger sulci are also called fissures. The cortex develops in the fetal stage of corticogenesis, preceding the cortical folding stage known as gyrification. The large fissures and main sulci are the first to develop.
Sulcus | |
---|---|
Identifiers | |
NeuroNames | 1208 |
TA98 | A14.1.09.006 |
TA2 | 5433 |
FMA | 75759 |
Anatomical terminology |
Mammals that have a folded cortex are known as gyrencephalic, and the small-brained mammals that have a smooth cortex, such as rats and mice are termed lissencephalic.
Structure
editSulci, the grooves, and gyri, the folds or ridges, make up the folded surface of the cerebral cortex. Larger or deeper sulci are also often termed fissures. The folded cortex creates a larger surface area for the brain in humans and other larger mammals, without the need of increasing the size of the skull.[1] In the human brain, two-thirds of the folded cortex is buried within the sulci, if the division of the hemispheres by the longitudinal fissure is taken into account.[2][3]
The sulci and fissures are shallow and deep grooves respectively in the cortex. A sulcus is a shallow groove that surrounds a gyrus or part of a gyrus. A fissure is a deeper furrow that divides the brain into lobes and also into the two hemispheres as the longitudinal fissure.[4] Fissures are the most prominent and invariable of the sulci.[2]
The pia mater, the membrane surrounding the brain follows the surface of the brain into each sulcus, but the arachnoid mater stretches across all sizes of the sulci, except the longitudinal fissure where it follows the pia mater. Consequently the inner sides of almost all sulci are separated only by the pia mater and the subarachnoid space, in which the cerebrospinal fluid circulates.[5] Sulci may be considered as extensions of the subarachnoid space.[2]
The approximate depth of a sulcus ranges between one and three centimetres. Other parameters of sulcal shape are length, width, and surface area.[6] Within a sulcus there may be smaller gyri, collectively known as transverse gyri.[2]
A sulcus is not necessarily a single structure. Some sulci have one or more parts that may branch in different directions. Such parts may be short, long, isolated, or connected to other sulci.[2]
Variations
editThe sulcal pattern varies between human individuals, but the sulci and gyri do have a generalised arrangement, making a common nomenclature possible.[7][2]
Types
editSulci may be described in terms of function, formation, or depth or width.[citation needed]
On the basis of function:
- A limiting sulcus separates at its floor into two areas which are different functionally and structurally e.g. central sulcus between the motor and sensory areas.[2]
- Axial sulcus develops in the long axis of a rapidly growing homogeneous area e.g. postcalcarine sulcus in the long axis of the striate area.
- Operculated sulcus separates by its lips into two areas and contains a third area in the walls of the sulcus e.g. lunate sulcus is an operculated sulcus, separating the striate and parastriate areas.
On the basis of formation:
- Primary sulci: formed before birth, independently. Example: central sulcus.
- Secondary sulcus: produced by factors other than the exuberant growth in the adjoining areas of the cortex. Examples are the lateral and parieto-occipital sulci.
On the basis of depth:
- Complete sulcus is very deep so as to cause elevation in the walls of the lateral ventricle. Examples are the collateral and calcarine sulci.
- Incomplete sulci are superficially situated and are not very deep, E.g. paracentral sulcus.
Development
editThe process of cortical folding is complex and incompletely understood. It is explained by a number of hypotheses including mechanical buckling, and axonal tension factors.[8] The hypotheses are not mutually exclusive and can include their combined effects, with that of another mechanism of tangential expansion. Tangential expansion is associated with radial glial cells, and a process of intercalation of cortical neurons in between cells of the outer cortical plate layer producing the outward buckling of a gyrus.[9][10]
In humans, cerebral convolutions appear at about five months and take at least into the first year after birth to fully develop.[11][12][13] There is a hierarchy of morphological development with the fissures and main sulci developing ahead of others. The first sulci to develop are the primary sulci, followed by secondary sulci. The more constantly found sulci are those related to functional specialization.[2] Tertiary sulci develop primarily after birth. The development of the tertiary sulci seems to be unaffected by genetics, and more related to environmental factors.[14]
Development varies greatly between individuals. The potential influences of genetic, epigenetic and environmental factors are not fully understood.[15]
Sulci of note
edit- Frontal lobe
Superior frontal sulcus, Inferior frontal sulcus, Precentral sulcus, Olfactory sulcus, Orbital sulcus, Paracentral sulcus
- Parietal lobe
Intraparietal sulcus, Marginal sulcus, Postcentral sulcus
- Occipital lobe
Lunate sulcus, Transverse occipital sulcus, Calcarine sulcus
- Temporal lobe
Superior temporal sulcus, Inferior temporal sulcus
- Interlobar fissures
Longitudinal fissure, Central sulcus, Lateral sulcus, Collateral sulcus, Callosal sulcus, Parieto-occipital sulcus, Occipitotemporal sulcus, Subparietal sulcus, Cingulate sulcus
- Limbic lobe
Hippocampal sulcus, Rhinal sulcus, Fimbriodentate sulcus, Central sulcus of the insula, Circular sulcus of insula
Clinical significance
editThe advanced cognitive abilities that have developed from the expansion of cortical folding, are shown to be adversely affected when the folds are malformed. Malformations of the cortical folds have been linked to the intellectual disabilities associated with epilepsy, schizophrenia, and autism.[16] Anomalies in gyrification can affect the width or depth of sulci that are associated with many neurological or neuropsychiatric disorders.[6] The widening of sulci is seen to indicate early atrophy in neurodegenerative disorders, and may be used as a biomarker in their progression.[6] It has been found that the width of cortical sulci increases not only with age,[17] but also with cognitive decline in the elderly.[18]
Ulegyria, is a condition of scarring in the deep regions of sulci leading to disruption of the associated gyri.
The sulci are valuable landmarks in microneurosurgery, and may also be used as corridors for surgeries.[2]
Other animals
editThe variation in the number of fissures in the brain (gyrification) between species is related to the size of the animal and the size of the brain. Mammals that have smooth-surfaced or nonconvoluted brains are called lissencephalics and those that have folded or convoluted brains gyrencephalics.[11][12] The division between the two groups occurs when cortical surface area is about 10 cm2 and the brain has a volume of 3–4 cm3. Large rodents such as beavers (40 pounds (18 kg)) and capybaras (150 pounds (68 kg)) are gyrencephalic, and smaller rodents such as rats and mice, and some New World monkeys are lissencephalic.[19][20]
Macaque
editA macaque has a more simple sulcal pattern. In a monograph Bonin and Bailey list the following as the primary sulci:[21]
- Calcarine fissure (ca)
- Central sulcus (ce)
- Sulcus cinguli (ci)
- Hippocampal fissure (h)
- Sulcus intraparitalis (ip)
- Lateral fissure (or Sylvian fissure) (la)
- Sulcus olfactorius (olf)
- Medial parieto-occipital fissure (pom)
- Fissura rhinalis (rh)
- Sulcus temporalis superior (ts) – This sulcus runs parallel to the lateral fissure and extends to the temporal pole and often superficially merges with it.
Additional images
editSee also
editReferences
edit- ^ Cusack, Rhodri (1 April 2005). "The Intraparietal Sulcus and Perceptual Organization". Journal of Cognitive Neuroscience. 17 (4): 641–651. doi:10.1162/0898929053467541. PMID 15829084.
- ^ a b c d e f g h i Ribas, Guilherme Carvalhal (February 2010). "The cerebral sulci and gyri". Neurosurgical Focus. 28 (2): E2. doi:10.3171/2009.11.focus09245. PMID 20121437.
- ^ Willbrand, Ethan H.; Maboudian, Samira A.; Kelly, Joseph P.; Parker, Benjamin J.; Foster, Brett L.; Weiner, Kevin S. (1 June 2023). "Sulcal morphology of posteromedial cortex substantially differs between humans and chimpanzees". Communications Biology. 6 (1): 586. doi:10.1038/s42003-023-04953-5. PMC 10235074. PMID 37264068.
- ^ Carlson, N. R. (2013). Physiology of Behavior. Upper Saddle River, NJ: Pearson Education Inc.
- ^ Brodal, Per (2004). The Central Nervous System: Structure and Function. New York: Oxford University Press. p. 89. ISBN 978-0-19-516560-9.
- ^ a b c Sun, BB; Loomis, SJ; Pizzagalli, F; et al. (14 October 2022). "Genetic map of regional sulcal morphology in the human brain from UK biobank data". Nature Communications. 13 (1): 6071. Bibcode:2022NatCo..13.6071S. doi:10.1038/s41467-022-33829-1. PMC 9568560. PMID 36241887.
- ^ Ono, Michio; Kubik, Stefan; Abernathey, Chad D. (1990). Atlas of the cerebral sulci. Stuttgart: Georg Thieme Verlag. ISBN 0-86577-362-9.
- ^ Andrews, TGR; Priya, R (17 June 2024). "The Mechanics of Building Functional Organs". Cold Spring Harbor Perspectives in Biology: a041520. doi:10.1101/cshperspect.a041520. PMC 7616527. PMID 38886066.
- ^ Striedter, Georg F.; Srinivasan, Shyam; Monuki, Edwin S. (8 July 2015). "Cortical Folding: When, Where, How, and Why?". Annual Review of Neuroscience. 38 (1): 291–307. doi:10.1146/annurev-neuro-071714-034128. PMID 25897870.
- ^ Ronan, L; Voets, N; Rua, C; et al. (August 2014). "Differential tangential expansion as a mechanism for cortical gyrification". Cerebral Cortex. 24 (8): 2219–28. doi:10.1093/cercor/bht082. PMC 4089386. PMID 23542881.
- ^ a b Hofman, MA (1985). "Size and shape of the cerebral cortex in mammals. I. The cortical surface". Brain, Behavior and Evolution. 27 (1): 28–40. doi:10.1159/000118718. PMID 3836731.
- ^ a b Hofman, M. A. (1989). "On the evolution and geometry of the brain in mammals". Progress in Neurobiology. 32 (2): 137–158. doi:10.1016/0301-0082(89)90013-0. PMID 2645619.
- ^ Richman, D. P.; Stewart, R. M.; Hutchinson, J. W.; Caviness Jr, V. S. (1975). "Mechanical model of brain convolutional development". Science. 189 (4196): 18–21. doi:10.1126/science.1135626. PMID 1135626.
- ^ White, T; Su, S; Schmidt, M; Kao, CY; Sapiro, G (February 2010). "The development of gyrification in childhood and adolescence". Brain and Cognition. 72 (1): 36–45. doi:10.1016/j.bandc.2009.10.009. PMC 2815169. PMID 19942335.
- ^ Dubois, J.; Benders, M.; Cachia, A.; Lazeyras, F.; Ha-Vinh Leuchter, R.; Sizonenko, S. V.; Borradori-Tolsa, C.; Mangin, J. F.; Huppi, P. S. (2008). "Mapping the Early Cortical Folding Process in the Preterm Newborn Brain". Cerebral Cortex. 18 (6): 1444–1454. doi:10.1093/cercor/bhm180. PMID 17934189.
- ^ Akula, SK; Exposito-Alonso, D; Walsh, CA (18 December 2023). "Shaping the brain: The emergence of cortical structure and folding". Developmental Cell. 58 (24): 2836–2849. doi:10.1016/j.devcel.2023.11.004. PMC 10793202. PMID 38113850.
- ^ Liu, T; Wen, W; Zhu, W; et al. (15 May 2010). "The effects of age and sex on cortical sulci in the elderly". NeuroImage. 51 (1): 19–27. doi:10.1016/j.neuroimage.2010.02.016. PMID 20156569.
- ^ Liu, T.; Wen, W.; Zhu, W.; Kochan, N. A.; Trollor, J. N.; Reppermund, S.; Jin, J. S.; Luo, S.; Brodaty, H.; Sachdev, P. S. (2011). "The relationship between cortical sulcal variability and cognitive performance in the elderly". NeuroImage. 56 (3): 865–873. doi:10.1016/j.neuroimage.2011.03.015. PMID 21397704.
- ^ Martin I. Sereno, Roger B. H. Tootell, "From Monkeys to humans: what do we now know about brain homologies," Current Opinion in Neurobiology 15:135–144, (2005)
- ^ Garcia, KE; Kroenke, CD; Bayly, PV (24 September 2018). "Mechanics of cortical folding: stress, growth and stability". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 373 (1759). doi:10.1098/rstb.2017.0321. PMC 6158197. PMID 30249772.
- ^ Gerhardt von Bonin, Percival Bailey, The Neocortex of Macaca Mulatta, The University of Illinois Press, Urbana, Illinois, 1947
- ^ Ten Donkelaar, HJ; Tzourio-Mazoyer, N; Mai, JK (2018). "Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex". Frontiers in Neuroanatomy. 12: 93. doi:10.3389/fnana.2018.00093. PMC 6252390. PMID 30510504.