In graph theory, the degree diameter problem is the problem of finding the largest possible graph for a given maximum degree and diameter. The Moore bound sets limits on this, but for many years mathematicians in the field have been interested in a more precise answer. The table below gives current progress on this problem (excluding the case of degree 2, where the largest graphs are cycles with an odd number of vertices).
Table of the orders of the largest known graphs for the undirected degree diameter problem
editBelow is the table of the vertex numbers for the best-known graphs (as of July 2022) in the undirected degree diameter problem for graphs of degree at most 3 ≤ d ≤ 16 and diameter 2 ≤ k ≤ 10. Only a few of the graphs in this table (marked in bold) are known to be optimal (that is, largest possible). The remainder are merely the largest so far discovered, and thus finding a larger graph that is closer in order (in terms of the size of the vertex set) to the Moore bound is considered an open problem. Some general constructions are known for values of d and k outside the range shown in the table.
k d |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
3 | 10[g 1] | 20[g 2] | 38[g 3] | 70[g 4] | 132[g 5] | 196[g 5] | 360[g 6] | 600[g 5] | 1250[g 7] |
4 | 15[g 2] | 41[g 8] | 98[g 5] | 364[g 9] | 740[g 10] | 1 320 | 3 243 | 7 575 | 17 703 |
5 | 24[g 2] | 72[g 5] | 212[g 5] | 624 | 2 772[g 11] | 5 516 | 17 030 | 57 840 | 187 056 |
6 | 32[g 12] | 111[g 5] | 390 | 1404 | 7 917[g 11] | 19 383 | 76 461 | 331 387[g 13] | 1 253 615 |
7 | 50[g 14] | 168[g 5] | 672[g 15] | 2 756[g 16] | 11 988 | 52 768 | 249 660 | 1 223 050 | 6 007 230 |
8 | 57[g 17] | 253[g 18] | 1 100 | 5 060 | 39 672[g 19] | 131 137 | 734 820 | 4 243 100 | 24 897 161 |
9 | 74[g 17] | 585[g 9] | 1 550 | 8 268[g 13] | 75 893[g 11] | 279 616 | 1 697 688[g 13] | 12 123 288 | 65 866 350 |
10 | 91[g 17] | 650[g 9] | 2 286 | 13 140 | 134 690[g 19] | 583 083 | 4 293 452 | 27 997 191 | 201 038 922 |
11 | 104[g 5] | 715[g 9] | 3 200[g 20] | 19 500 | 156 864[g 20] | 1 001 268 | 7 442 328 | 72 933 102 | 600 380 000 |
12 | 133[g 21] | 786[g 19] | 4 680[g 22] | 29 470 | 359 772[g 11] | 1 999 500 | 15 924 326 | 158 158 875 | 1 506 252 500 |
13 | 162[g 23] | 856[g 24] | 6 560[g 20] | 40 260 | 531 440[g 20] | 3 322 080 | 29 927 790 | 249 155 760 | 3 077 200 700 |
14 | 183[g 21] | 916[g 19] | 8 200[g 20] | 57 837 | 816 294[g 11] | 6 200 460[g 25] | 55 913 932 | 600 123 780 | 7 041 746 081 |
15 | 187[g 26] | 1 215[g 27] | 11 712[g 20] | 76 518 | 1 417 248[g 20] | 8 599 986 | 90 001 236 | 1 171 998 164 | 10 012 349 898 |
16 | 200[g 28] | 1 600[g 27] | 14 640[g 20] | 132 496[g 27] | 1 771 560[g 20] | 14 882 658[g 25] | 140 559 416 | 2 025 125 476 | 12 951 451 931 |
Entries without a footnote were found by Loz & Širáň (2008). In all other cases, the footnotes in the table indicate the origin of the graph that achieves the given number of vertices:
- ^ The Petersen graph.
- ^ a b c Optimal graphs proven optimal by Elspas (1964).
- ^ Optimal graph found by Doty (1982) and proven optimal by Buset (2000).
- ^ Graph found by Alegre, Fiol & Yebra (1986).
- ^ a b c d e f g h i Graphs found by Geoffrey Exoo from 1998 through 2010.
- ^ Graph found by Jianxiang Cheng in 2018.
- ^ Graph found by Conder (2006).
- ^ Graph found by Allwright (1992).
- ^ a b c d Graphs found by Delorme (1985a).
- ^ Graph found by Comellas & Gómez (1994).
- ^ a b c d e Graphs found by Pineda-Villavicencio et al. (2006).
- ^ Optimal graph found by Wegner (1977) and proven optimal by Molodtsov (2006).
- ^ a b c Graphs found by Canale & Rodríguez (2012).
- ^ The Hoffman–Singleton graph.
- ^ Graph found by Sampels (1997).
- ^ Graph found by Dinneen & Hafner (1994).
- ^ a b c Graphs found by Storwick (1970).
- ^ Graph found by Margarida Mitjana and Francesc Comellas in 1995, and independently by Sampels (1997).
- ^ a b c d Graphs found by Gómez (2009).
- ^ a b c d e f g h i Graphs found by Gómez & Fiol (1985).
- ^ a b Graphs found by Delorme & Farhi (1984).
- ^ Graph found by Bermond, Delorme & Farhi (1982).
- ^ McKay–Miller–Širáň graphs found by McKay, Miller & Širáň (1998).
- ^ Graph found by Vlad Pelakhaty in 2021.
- ^ a b Graphs found by Gómez, Fiol & Serra (1993).
- ^ Graph found by Eduardo A. Canale in 2012.
- ^ a b c Graphs found by Delorme (1985b).
- ^ Graph found by Abas (2016).
References
edit- Abas, Marcel (2016), "Cayley graphs of diameter two with order greater than 0.684 of the Moore bound for any degree", European Journal of Combinatorics, 57: 109–120, arXiv:1511.03706, doi:10.1016/j.ejc.2016.04.008
- Alegre, Ignacio; Fiol, Miquel; Yebra, J. Luis A. (1986), "Some Large Graphs with Given Degree and Diameter", Journal of Graph Theory, 10 (2): 219–224, doi:10.1002/jgt.3190100211
- Allwright, James (1992), "New (Δ, D) graphs discovered by heuristic search", Discrete Applied Mathematics, 37–38: 3–8, doi:10.1016/0166-218X(92)90120-Y
- Bermond, Jean-Claude; Delorme, Charles; Farhi, Guy (1982), "Large Graphs with Given Degree and Diameter III" (PDF), Annals of Discrete Mathematics, North-Holland Mathematics Studies, 13: 23–31, doi:10.1016/S0304-0208(08)73544-8, ISBN 9780444864499, S2CID 118362048
- Buset, Dominique (2000), "Maximal cubic graphs with diameter 4", Discrete Applied Mathematics, 101 (1–3): 53–61, doi:10.1016/S0166-218X(99)00204-8
- Canale, Eduardo; Rodríguez, Alexis (2012), On the application of voltage graphs to the degree/diameter problem (PDF), archived from the original (PDF) on 2020-09-28
- Comellas, Francesc; Gómez, José (1994). "New Large Graphs with Given Degree and Diameter". arXiv:math/9411218.
- Delorme, Charles; Farhi, Guy (1984), "Large Graphs with Given Degree and Diameter - Part I", IEEE Transactions on Computers, 33 (9): 857–860, doi:10.1109/TC.1984.1676504
- Delorme, Charles (1985a), "Grands Graphes de Degré et Diamètre Donnés", European Journal of Combinatorics, 6 (4): 291–302, doi:10.1016/S0195-6698(85)80043-3
- Delorme, Charles (1985b), "Large bipartite graphs with given degree and diameter", Journal of Graph Theory, 9 (3): 325–334, doi:10.1002/jgt.3190090304, S2CID 21199003
- Dinneen, Michael J.; Hafner, Paul R. (1994), "New Results for the Degree/Diameter Problem", Networks, 24 (7): 359–367, arXiv:math/9504214, doi:10.1002/net.3230240702, S2CID 26375247
- Doty, Karl (1982), "Large regular interconnection networks", Proceedings of the 3rd International Conference on Distributed Computing Systems, IEEE Computer Society, pp. 312–317
- Elspas, Bernard (1964), "Topological constraints on interconnection-limited logic", 1964 Proceedings of the Fifth Annual Symposium on Switching Circuit Theory and Logical Design, pp. 133–137, doi:10.1109/SWCT.1964.27
- Gómez, José (2009), "Some new large (Δ, 3)-graphs", Networks, 53 (1): 1–5, doi:10.1002/NET.V53:1
- Gómez, José; Fiol, Miquel (1985), "Dense compound graphs", Ars Combinatoria, 20: 211–237
- Gómez, José; Fiol, Miquel; Serra, Oriol (1993), "On large (Δ,D)-graphs", Discrete Mathematics, 114 (1–3): 219–235, doi:10.1016/0012-365X(93)90368-4
- Hoffman, Alan J.; Singleton, Robert R. (1960), "Moore graphs with diameter 2 and 3", IBM Journal of Research and Development, 5 (4): 497–504, doi:10.1147/rd.45.0497, MR 0140437
- Loz, Eyal; Širáň, Jozef (2008), "New record graphs in the degree-diameter problem" (PDF), Australasian Journal of Combinatorics, 41: 63–80
- McKay, Brendan D.; Miller, Mirka; Širáň, Jozef (1998), "A note on large graphs of diameter two and given maximum degree", Journal of Combinatorial Theory, Series B, 74 (4): 110–118, doi:10.1006/jctb.1998.1828
- Miller, Mirka; Širáň, Jozef (2013), "Moore graphs and beyond: A survey of the degree/diameter problem", Electronic Journal of Combinatorics, Dynamic survey D
- Molodtsov, Sergey (2006), General Theory of Information Transfer and Combinatorics, pp. 853–857, ISBN 978-3-540-46244-6
- Pineda-Villavicencio, Guillermo; Gómez, José; Miller, Mirka; Pérez-Rosés, Hebert (2006), "New Largest Graphs of Diameter 6", Electronic Notes in Discrete Mathematics, 24: 153–160, doi:10.1016/j.endm.2006.06.044, hdl:1959.17/67691
- Sampels, Michael (1997), "Large Networks with Small Diameter", Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol. 1335, Springer, Berlin, Heidelberg, pp. 288–302, doi:10.1007/BFb0024505, ISBN 978-3-540-69643-8
- Storwick, Robert (1970), "Improved Construction Techniques for (d, k) Graphs", IEEE Transactions on Computers, C-19 (12): 1214–1216, doi:10.1109/T-C.1970.222861
- Wegner, Gerd (1977), Graphs with given diameter and a coloring problem (PDF), Technische Universität Dortmund, doi:10.17877/DE290R-16496
External links
edit- The Degree-Diameter Problem on CombinatoricsWiki.org.
- Eyal Loz's degree-diameter problem page (archived 2016.)
- Geoffrey Exoo's degree-diameter record graphs page (archived 2015.)
- Guillermo Pineda-Villavicencio's Research page.