Untitled

edit

I did a Google search on: http://www.google.com/search?q=Andreini+tessellation and got no results? Is Andreini the proper name? --css

Some searches for some of the tilings suggest that none of the google pages mention the concept. Andreini is the name used by books I have, but someone else is welcome to change it if they have a better name.

Since web search delivers no clue, could you add the "hardcopy" refrences of books you mentioned please? Mikkalai 08:03, 14 Dec 2003 (UTC)

The article claims that "All of these are found in crystal arrangements." Really ? http://www.iucr.org/iucr-top/comm/cteach/pamphlets/21/node4.html says only 17 crystal space groups are known to exist in real crystals (out of the theoretically 230 mathematical space groups) ... but perhaps some "space groups" include more than one "Andreini tesselation" ? --DavidCary 04:33, 8 Jan 2005 (UTC)

Likely it's impossible in some (or most) of the 230 space groups to find a point which has equal distance to enough of its images to form closed cells. —Tamfang 08:04, 24 February 2006 (UTC)Reply
most of these tesselations actually lie in just three space groups: body-centered cubic, the cubic, and face-centered cubic symmetries. There is one (maybe two) with the symmetry of the diamond lattice, and a few with some of the uninteresting reflection groups. In short, none of the bizarro symmetries are represented, so the claim may be more plausible than it sounds. On the other hand, what does it mean to say that a tesselation appears in a crystal arrangement? -- strauss at uark.edu

I added an enumerations of the 28 tessellations, using the added online links provided. I grouped them as best I could for a first pass. Obviously some pictures need to be added.

The dynamic VRML models (from the first link) were very effective in showing the arrangements of polyhedra at each vertex. For single-view images, transparent faces might be more helpful. Maybe I can manipulate the settings a bit to get some good pictures.

Tom Ruen 12:08, 23 October 2005 (UTC)Reply

alternated cubic

edit

Does "alternated cubic" mean the face-centered cubic tiling by rhombic dodecahedra? If so, it's interesting that a nonuniform pattern can become uniform by truncation; I wonder whether there are any analogous finite examples. --Anton Sherwood 01:35, 10 January 2006 (UTC)Reply

So far, names just come from description at [1], and so I can't say more. Sorry. Tom Ruen 04:34, 10 January 2006 (UTC)Reply

I see now: the "alternated cubic" tilings come from treating alternate cells differently, so that the vertex figure has tetrahedral but not cubic symmetry. —Tamfang 18:47, 16 March 2006 (UTC)Reply

 

Can you draw the fundamental domain for them? The cubic forms represent 1/48 of a cube - connecting a tetrahedron of vertex, mid-edge, mid-face, and cube center AND one generating point. What does the fundamental domain for an alternated cubic look like? Tom Ruen 00:28, 17 March 2006 (UTC)Reply

The only difference is that the plane {0,1,2} is no longer a mirror, so take that simplex and add its reflection in that plane. —Tamfang 07:24, 17 March 2006 (UTC)Reply
...or equivalently in the plane {1,2,3}. (Obvious, given duality, but it took me awhile to see it) —Tamfang 20:15, 21 March 2006 (UTC)Reply
Interesting, so there's 4 points: 0,1,3a,3b. The face-center point (2) disappears, and we have two cell-centers. I'll have to think what effect this has! Same thing can be done on a square tiling, but resulting triangle is same 45-45-90 triangle, while a tetrahedron "doubled" generates a different symmetry. If a cubic honeycomb has a symmetry group [4,3,3], I wonder what is the "alternated cubic" symmetry group(s) is/are called? I've got Coexter's notation on sphere symmetry page at least: List of spherical symmetry groups, but not seen any tables for higher [a,b,c] types. Tom Ruen 07:44, 17 March 2006 (UTC)Reply
you mean [4,3,4] not [4,3,3] ;)
Tamfang 05:52, 19 April 2006 (UTC)Reply
In terms of crystal symmetry, perhaps it is Tetragonal versus Cubic? Not that I understand much at all about these Crystal structure groups either, but just guessing blindly from the choices and taking away one symmetry plane??? Tom Ruen 07:57, 17 March 2006 (UTC)Reply
No. —Tamfang 05:52, 19 April 2006 (UTC)Reply

The "bitruncated alternated cubic" is not made by the usual kaleidoscope method with the cell I just described! (It has the right symmetries, but its edges do not meet the mirrors at right angles.) For that you need to double the cell again: reflect the original cell in both of its isosceles triangles, yielding a cell whose corners may be called (±1,0,0), (0,1,±1) — the origin being "1" or "2". This cell can also produce the "octet", truncated alternated cubic, rectified cubic and bitruncated cubic, all of which can also be made with the doubled cell, and of which the last two can be made with the single cell.

The Coxeter-Dynkin graph of the original cubic cell is

o--4--o--3--o--4--o

That of the doubled cell is

o--3--o--3--o
      |
      4
      |
      o

And that of the quadrupled cell is

o--3--o
|     |
3     3
|     |
o--3--o

Tamfang 05:52, 19 April 2006 (UTC)Reply

and after laboriously working out these graphs I opened Coxeter's Regular Polytopes and found them staring at me, as it were, at 5.62 (page 85). —Tamfang 04:10, 20 April 2006 (UTC)Reply

skeleton images

edit

See User:Tamfang/Tilings: skeleton images of bitruncated, cantellated, cantitruncated, runcitruncated and omnitruncated cubic tilings. More to come! —Tamfang 07:45, 24 February 2006 (UTC)Reply

Very cool! For fun I linked a thumb image for first in the article. Tom Ruen 09:21, 24 February 2006 (UTC)Reply

the prismatics

edit

The duals of hexagonal-prismatic and triangular-prismatic are not uniform: the edges are not equal. —Tamfang 07:40, 16 April 2006 (UTC)Reply

arrangement by symmetry

edit

User:Tamfang/Tilings now contains a proposed rewrite of Andreini tessellation. —Tamfang 06:11, 21 April 2006 (UTC)Reply

I'm glad for your work. My only concern is I tend towards wanting a compact table over wordy descriptions. I'd put the descriptions in individual articles. I don't need a specific arrangement, but I like some statistical information like my [a/b] notation for #-cells/vertex and #types of cells. In general I'd try to support different naming systems, like Guy Inchbald uses codes like O+T even if not unique. [2]. Well, and I don't remember what Grunbaum had in his paper, but there was a number of different indices at least to identify them between papers.
For me, I'd USE this article as a reference, like "Oh, I have this space-filling tessellation, what the HECK is it, and look at a table to identify it quickly." I accept my table approach could get ugly anyway and could as well go in List of Andreini tessellations. Since I have no time to spare, it's your call what and when you want to replace it. Tom Ruen 07:41, 21 April 2006 (UTC)Reply

Something like this?

name symmetry type cell types (# at each vertex) # families of continuous face planes vertex figure view
cubic cubic cubes (8) 3 (image) (image)
tetrahedral-octahedral alternated cubic tetrahedra (8), octahedra (6) 4 (image) (image)

... and so on ... —Tamfang 21:42, 21 April 2006 (UTC)Reply

Something like that. I'm now STUPIDLY thinking of backtracking again, specifically the 2D parallel of uniform tilings, currently at least grouped in given in Tiling by regular polygons or List of uniform planar tilings. Basically whatever sort of table I'd support ought to exist in a parallel article uniform tiling.
There's good parallels to consider, like Elongated triangular tiling similar special case like [3] and [4].
Well, also nice to have a table like Archimedean solid except can't have nice VEFC counts.
I'll be quiet since I'm indecisive as well as no time! Sorry. :( Tom Ruen 07:12, 22 April 2006 (UTC)Reply
(VRML clients for MacOS don't work well, alas.)
In List of uniform polyhedra, I counted the VEFC per period. —Tamfang 15:53, 22 April 2006 (UTC)Reply

It's shaping up, go have a look! (User:Tamfang/Tilings) Perhaps instead of the vertex figure it should show the dual cell? —Tamfang 04:49, 5 May 2006 (UTC)Reply

I don't think the wire frames of the andreini tesselations are particularly enlightening. I'd much prefer to see the tesselations in solid form. I've rendered most of the 'interesting' tesselations if images are needed. http://xaviergisz.googlepages.com/andreinitesselationsxaviergisz

I see both are useful. If you can help add nice solid images, please do! Tom Ruen 04:02, 13 May 2006 (UTC)Reply
I moved the added solid images into the table. I also noticed the NEW table is missing the 10 "prismatic" forms (semiregular tilings extruded into prism slabs). These ought to be (RE)added here, even if in a split table. Tom Ruen 06:41, 14 May 2006 (UTC)Reply
Okay, I added back the 11 prismatic forms in a brief table. Tom Ruen 07:17, 14 May 2006 (UTC)Reply

illustration

edit

I agree that some of the edge views are not helpful, particularly those in which the edges continue through the vertices. At least they were easy to make. ;) It might help to make the edges parti-colored so that e.g. triangles have white edges, squares have yellow edges and so on. I'm unsure how to code that idea. —Tamfang 16:19, 15 May 2006 (UTC)Reply

Solid views are sometimes hard to understand because of the hidden parts! I have two ideas to get around that: an "exploded" view, where each cell is appropriately centred but half its proper size; and a "composition" view, where the central cluster showing all the cells together is surrounded by groups of only one cell type. (A picture, when I get it ready, will better show what I mean. To do this well, I have to re-learn Povray texture and lighting technique, which I haven't used in ages.) —Tamfang 16:19, 15 May 2006 (UTC)Reply

Someone improved the solid views while I wasn't looking. Kudos! —66.52.133.106 22:16, 6 July 2006 (UTC)Reply

Stub articles

edit

I completed stub articles for all the nonprismatic forms. Just dropped in a sentence and nearly empty table. I figured it was worth the start for completeness since we had images. Lots of table fields to fill. All my time is done for now! Tom Ruen 00:13, 13 July 2006 (UTC)Reply

Get some sleep ;) —Tamfang 06:19, 13 July 2006 (UTC)Reply

Conway's take on things

edit

for what it's worth, Conway has a whole batch of names for the vertex-uniform, non isotropic tilings of space by archimedean polyhedra. (By non-isotropic, I just mean to rule out the tilings by "slabs"-- that is, the tilings with one of the cubic symmetries) The enumeration is of course the same as the Andreini tesselations.

I've put an excerpt from our forthcoming book that includes pix at comp.uark.edu/~strauss/downloads/archilles.pdf

Conway calls these tilings architectronic and their duals catotropic (you can read the rationale in the file)

strauss at uark.edu

Reference indexing

edit

I used Grumbaum's paper to cross reference the honeycombs from varied sources. I also reordered them to match Johnson's indexing, since the truncation operation approach (for cubic at least) matches his derviations. For the cubics I also added four cell columns, as done with the uniform polychoron article. I've not seen Johnson's 1991 paper, but it looks like he had a systematic nonseequential approach for indexing that skipped numbers and grouped them into 10's. Tom Ruen 18:03, 22 July 2006 (UTC)Reply

List of figures

edit

The list of figures i use is of my device. George Olshevsky quotes me as discovering two in the 143 convex tilings in four dimensions. 1 occurs in 1dt, 1-4 in 2dt, 1-6 in 3dt. This list arranges all of the prism-layers at the beginning. So 1 designates the square, cubic, tesseractic, etc. The 8 at #2 include hexagon-prisms, etc. Because we count the cubic at #1, it is removed from later contention. This is why 434 gives only 7, and 434 only 14.

1. The comb products on the horogon (square, cubic, tesseractic, etc)
-. in one dimension: 1
2. Ten non-comb tilings in 3d: 44 = 2, 36 = 6.
3. The snubs on 44 and 36
4 The laminate tiling LC1P
-. In two dimensions, 11
5. Wythoff Mirror edge on these groups 434 (7), 43A (4) and 3333: 1
6. Laminate tilings: LC2, LC2P, LB2, LA2P, LB2P
-. In 3 dimensions. 28
7. 55 products of #2 * #2.
8 Wythoff's Mirror edge on 3343 (28), 4334 (14), 433A (4), E33A (0), 33333: (7) = 53
9 The snub tiling s3433
10 The laminate tilings LB3, LC3, LA3P, LB3P, LC3P, LC1A2, LC1B2, LC1C2 = 8
-. In four dimensions, 145

This list consists of 145, not 143 that George gives. I am not shure which two he suppresses. --Wendy.krieger 10:42, 23 September 2007 (UTC)Reply

Thanks Wendy. I'll get through George's list sometime soon and compare myself. Tom Ruen (talk) 07:10, 26 June 2008 (UTC)Reply

Noncompact and hyperbolic honeycombs

edit

I added two sections for noncompact honeycombs in Euclidean 3-space, and compact honeycombs in hyperbolic 3-space. Just a start, just included Coxeter groups so far. Probably I'll move them to the end and expand the intro when I get the enumeration included. Tom Ruen (talk) 07:10, 26 June 2008 (UTC)Reply

The expanded section Convex_uniform_honeycomb#Hyperbolic_forms is pretty long. I'll replace it with a summary in that section when I'm done and move the enumerated tables to a new article, like Convex_uniform_hyperbolic honeycomb(?) Tom Ruen (talk) 22:16, 2 January 2009 (UTC)Reply

I was just thinking the same thing - the page is taking noticably long to load. Something like Convex uniform honeycombs in hyperbolic space might be a bit more evocative, I think. Antony-22 (talk) 06:41, 25 January 2009 (UTC)Reply

Vertex figures

edit

Using the vertex figure diagrams for the uniform 4-polytopes in Conway's new book, I made some crude diagrams for vertex figures for the cubic honeycomb family. I think they're simpler than the 3D diagrams which don't have edges labeled by face order. I colored them based on {p,q,r}={4,3,4}, with red={p}, green={q}, purple={r}, yellow={}x{}={4}

 

I'll be doing the same for the uniform polychora (Talk:Uniform_polychoron#Vertex_figures), but thought I'd start here. If this is good, perhaps someone with SVG skills can make some nicer ones! Tom Ruen (talk) 23:41, 11 December 2008 (UTC)Reply

Mine are prettier but these are more useful. —Tamfang (talk) 10:10, 14 December 2008 (UTC)Reply
I started adding the diagram vertex figures, some missing, some "mis-colored" from a different symmetry, but I'll upload more when I finish them. Tom Ruen (talk) 22:27, 18 December 2008 (UTC)Reply

This chart covers p=q=3 (quarter cubic family), and 5 hyperbolic groups. Tom Ruen (talk) 06:30, 29 December 2008 (UTC)  Reply

I think I have all the new (tetrahedral domain) vertex figures completed and checked. Tom Ruen (talk) 22:16, 2 January 2009 (UTC)Reply

historic booboo

edit

What was Andreini's wrong example? —Tamfang (talk) 20:09, 15 June 2010 (UTC)Reply

You can look yourself. I emailed you Branko's paper in PDF. Andreini order indices are listed as A#, with A? for missing tessellations, and A#' for gyro-variations missed. Tom Ruen (talk) 01:19, 16 June 2010 (UTC)Reply
The first page mentions that Andreini's #13′ is false, but does not describe it (nor mention it again)!
Given that Andreini #13 is the quarter-cubic, we can conjecture that #13′ extends it with trihex prismatic slabs, supposing that Andreini overlooked the vertices interior to the T+tT slabs. —Tamfang (talk) 02:33, 16 June 2010 (UTC)Reply

Maybe define the subject of the article?

edit

"Convex uniform honeycombs" is not a common phrase, and it can't possibly be a great deal of trouble for someone knowledgeable on the subject to take a couple of minutes to define exactly what that means at the beginning of the article.

After someone went to a great deal of trouble to list all the cases diagrammatically, surely letting readers know *what* is being listed would improve the quality of the article dramatically.

One more thing: Is it common to list as a reference to a Wikipedia article an unpublished manuscript (and especially one that has no description of where it can be found)? I think not. But two such manuscripts are listed as references for this article.Daqu (talk) 16:28, 22 November 2010 (UTC)Reply

On references, Branko Grünbaum's paper Uniform tilings of 3-space is the ONLY print-published source of the complete listing of 28 forms. He used the paper to describe the incompleteness of the original 1905 listing of 25 forms, and gives credit to normal Johnson and I. Alexeyev for their unpublished enumerations that preceeded his. He referenced Johnson's book as a manuscript, so I figured it was valid to do the same. I've not seen Alexeyev's listing in any form. I've seen George Olshevsky's enumeration as a PDF. Tom Ruen (talk) 21:39, 22 November 2010 (UTC)Reply
edit

Hello fellow Wikipedians,

I have just modified 2 external links on Convex uniform honeycomb. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:

When you have finished reviewing my changes, you may follow the instructions on the template below to fix any issues with the URLs.

This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}} (last update: 5 June 2024).

  • If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
  • If you found an error with any archives or the URLs themselves, you can fix them with this tool.

Cheers.—InternetArchiveBot (Report bug) 18:48, 12 August 2017 (UTC)Reply

It would be nice of the Archimedean components of the honeycomb could be instantly read off in the tables

edit

It would be nice of the Archimedean components of the honeycomb could be instantly read off in the tables. Currently their names are not listed, unfortunately.216.161.117.162 (talk) 21:20, 23 September 2020 (UTC)Reply