Talk:Electric potential energy

Latest comment: 1 year ago by TheGoatOfSparta in topic Terminology in definition

Animated diagram unusable

edit

Is there some way to slow down the animated diagram? Who can read that fast? Even Evelyn Wood would have trouble with it. It's way too fast. Betaneptune (talk) 09:44, 10 April 2020 (UTC)Reply

Negative Stored Energy in QM?

edit

I find the last paragraph of the section on Stored Energy to be a bit misleading. The fact is that two oppositely charged particles held in close proximity will have less energy than two oppositely charge particles held infinitely far apart. However, both energies are formally infinite for point particles. This has nothing to do with quantum mechanics. Defining a single charged point particle to have zero energy is the quantum mechanics, and is a good introduction to the idea of renormalization. If such a paragraph were included, it would be nice to point out such subtleties, rather than cloud matters by saying the previous equation isn't true. 70.253.79.237 (talk) 18:19, 8 February 2009 (UTC)Reply

In the context of an article about electrostatic potential energies, the final paragraph seem likely to confuse a lot of non-experts, so I have removed it as part of a general clean-up of this article (RGForbes (talk) 01:38, 15 April 2009 (UTC))(Richard)Reply

mass

edit

Seems like this article deals with the basics, a point charge, but doesn't advance to include charges with mass. What do you think?   Thanks, Daniel.Cardenas (talk) 18:04, 16 May 2009 (UTC)Reply

Sign of energy

edit

I am somewhat confused by the sign of energy in an electrical field. Say we have two oppositely charged ions. My naive thinking is: the energy of the system is U = q1*q2/r12 < 0; but it can also be U = \integral |E|^2 dr^3 >0 (according to the last section of this article)

Why the sign of U is different? or in another word, what I am missing here? —Preceding unsigned comment added by 128.219.49.9 (talk) 15:52, 7 July 2010 (UTC)Reply

Energy in electronic elements

edit

I think that the equation for "The total electric potential energy stored in a capacitor" is wrong... I don't see how V squared is equal to Q. — Preceding unsigned comment added by Crococo (talkcontribs) 11:31, 9 August 2011 (UTC)Reply

It does not say that.--Patrick (talk) 11:41, 9 August 2011 (UTC)Reply

Formula for the point charge distribution is obviously wrong.

edit

the distance between each charges needs to be calculated for every singe charge, not just between the ith and the qth charge, whatever that even means.— Preceding unsigned comment added 17 August 2011 (UTC)

I removed this messy part and added a clarifying remark.--Patrick (talk) 05:01, 17 August 2011 (UTC)Reply

Intro

edit

Why is the formula for the electric potential energy given in the intro section only to have it repeated later in the article? Plus the explanation that follows the formula doesn't have much to do with the formula itself. I suggest deleting the the formula as to reduce the clutter to this article. — Preceding unsigned comment added by Pprrff (talkcontribs) 04:08, 17 August 2011 (UTC)Reply

That makes two of us who thought this. Okay, I decide to be bold and remove it, unless somebody stenuously objects. Formulas in ledes, unless that article is about the formula itself, are not a good idea. SBHarris 02:28, 18 August 2011 (UTC)Reply
Re-added the equations because they were very helpful references for students going through the article for the first time. Even if they are just a reference, they were useful later in going through the rest of the article. If there is another location that is better to put them, feel free to move them. But there is nowhere else in the article that shows they are all equal. — Preceding unsigned comment added by FrozenMan (talkcontribs) 19:54, 3 October 2011 (UTC)Reply

Definition

edit

For the one point charge the definintion we currenty have is: For one point charge q in the presence of an electric field E due to another point charge Q, the electric potential energy is defined as the negative of the work done to bring it from the reference position r_ref to some position r

Is it really the negative of the work? On the article the equation starts with the negative of the work but U(r_ref) - U(r) are also changed. When you get to the integral what you have is that the potential energy is the work to bring the charge from infinite to the r point.

So what I think is that the definition should be: For one point charge q in the presence of an electric field E due to another point charge Q, the electric potential energy is defined as the work done to bring it from the reference position r_ref to some position r

Am I missing something? Where is that little thing that I am unable to see or is it simply that the article is wrong?

--IngenieroLoco (talk) 20:37, 17 June 2012 (UTC)Reply

Ok I just changed that part of the article to make it more coherent and understandable. --IngenieroLoco (talk) 17:49, 18 June 2012 (UTC)Reply

Proof of Energy stored in an electrostatic field distribution

edit

How do we get from this step:

 

... to this step?

So, the energy density, or energy per unit volume   of the electrostatic field is:

 

The integral on top is a definite integral with constants as its limits - can we really apply the fundamental theorem of calculus here? The   on top doesn't depend on position, whereas the   in the expression   does.

Intuitively, the step on top shows that total electrostatic potential energy in the universe is proportional to integral of the squared magnitude of the electric field everywhere, but the step below is saying that the energy density at any given point is proportional to the squared magnitude of the electric field there, which seems to be a stronger claim.

Yaxy2k (talk) 14:54, 1 December 2013 (UTC)Reply

Explanation for the layman

edit

This article does no favors to the layman. I'm suggesting the following, incorporate it into the article if you like it

Suppose I'm able to hold a negative charge on my left hand, and another negative charge on my right hand. This configuration of charges seems to have no energy because there is no movement. But if I let go the one on my right hand, it would accelerate, thus gaining energy. This energy couldn't have been created (conservation of energy), so we say that it was already there somehow and we call it potential energy, the energy that the configuration has the potential to release. This idea is supported by the fact that: 1. this exact configuration always releases the same energy 2. the energy that you need to assemble this configuration is always greater than or equal to the energy that it releases.

With the "the energy that the configuration has the potential to release" definition I would write something along the lines of

 

That is, the potential energy of this configuration of charges is the work that one charge would do on the other if we let it evolve without any other constraints. --94.132.98.33 (talk) 10:58, 23 January 2016 (UTC)Reply

Notation of Voltage (Electric Potential): V vs \Phi

edit

When reading around this article and the two refrences that it provides both notations. However, as ISO 80000 Part 6 stipulates that either V or \varphi may be used to denote electric potental difference and that Electromagnetism, 2E (Grant) uses the notation \phi for electric potential (absolute) and V for potential difference, I am hesitent to be bold and change it.

However, in most of the other Wikipedia articles (incuding the article on Electric potential itself), they use the notation convention of V (I suspect that this is because it only physically makes sence to talk about differences in potential). Therefore, I do not think it wise to refer discuss absolute electric potential as it all must have a refrence somewhere (let it be zero or otherwise).

As such, I think changing the notation of this article of voltage from \Phi to V would increase its readability for those who are unfamilar with this topic and may be refrencing other sources that use V (which seems to be the most common notation both with online sources and text sources).

--- Potchama 22:20, 12 March 2019 (UTC)Reply

Terminology in definition

edit

"Alternatively, the electric potential energy of any given charge or system of charges is termed as the total work done by an external agent in bringing the charge or the system of charges from infinity to the present configuration without undergoing any acceleration." In the text I quoted I would change " external agent" to " force", "to the present configuration" to "to having the present relative distances". I feel like someone could think that the absolute position matters, and so in the case of a lone charge think that its potential energy is greater than zero. Anyways, I feel like more explanations are necessary about when the energy is positive and when it is negative. For example, in the case of a system of a positive and a negative charge, work is not needed to bring the charges together since they already attract each other, but it is needed to keep them from getting too close. So the work is acting against the displacement, which makes it negative, which makes the potential energy negative. TheGoatOfSparta (talk) 13:17, 6 July 2023 (UTC)Reply