In the factor theorem for (x-a) to be a factor it is not necessary for 'a' to be a real number. 'a' can be a complex number too.

I made the Formal bit look a bit more professional, but I still don't like this article very much. 87.113.30.207 (talk) 15:15, 16 May 2008 (UTC)Reply

stub?

edit

Is this a stub? It seems awfully short. —Preceding unsigned comment added by 24.22.176.33 (talk) 06:01, 3 June 2008 (UTC)Reply

Formal Version

edit

I expanded the generality of the formal version to include the word integral domain as follows:

Let   be a polynomial with complex coefficients, and   be in an integral domain (e.g.  ).

To see the proof see: http://cmes.uccs.edu/Fall2007/Math414/Videos/Math414Lecture22.mov

so we aren't restricted to  . I don't believe that this makes the definition too abstract.

S243a (talk) 12:01, 18 December 2010 (UTC)Reply

Generalized Factor Theorem

edit

Hello. I have no editing experience on wikipedia, so I apologize for the inevitable errors. I would like to point out that the factor theorem can be easily extended to non-linear divisors. Perhaps you could consider the possibility of inserting a simple example on the page, like the following.

Let  . Substituting   for   in   we obtain

 

which is the remainder of   on division by  . Then   does not divide   [1].

Flaudano (talk) 23:19, 28 March 2019 (UTC)Reply

References

  1. ^ Laudano, Francesco (2018). "A generalization of the remainder and factor theorem". International Journal of Mathematical Education in Science and Technology. doi:10.1080/0020739X.2018.1522676.

Is this still Start class?

edit

With a more general statement, more examples, and some proofs, does this article deserve to be Start class any more? --Svennik (talk) 18:46, 15 October 2023 (UTC)Reply

Cluttered notation?

edit

Can someone propose how to unclutter the notation in the introduction and elsewhere? --Svennik Svennik (talk) 18:54, 15 October 2023 (UTC)Reply

"Commutative ring" might scare people off, so I've introduced a kind of warning

edit

The factor theorem is often taught in schools before any ring theory. So I've tried to preface the paragraph about commutative rings with some sort of warning. I don't know whether this breaks any conventions on Wikipedia. --Svennik (talk) 12:02, 16 October 2023 (UTC)Reply

Necessity of mentioning properties of polynomial composition

edit

The composition operation on polynomials unsurprisingly is associative and has a unit. It's not a complete triviality to say this because polynomials are not in general functions. Any fully rigorous proof of any very basic theorem about polynomials - that uses composition of polynomials in the argument - should remark that these facts are being used. Conversely though, it's better not to clutter the main part of the argument with these considerations (which few might appreciate anyway), which is why I've decided to put this discussion in a separate note. Much of the time, polynomials are thought of as functions, and so these points are not worth making; but in general, they are not. --Svennik (talk) 16:10, 18 October 2023 (UTC)Reply

Just to be clear, does this seem unnecessarily pedantic? I'm always uncertain where to draw the line. --Svennik (talk) 16:48, 18 October 2023 (UTC)Reply

No warning about using advanced notions in something people learn in secondary school?

edit

Just to be clear, we don't want to provide any warning before we unload the term "commutative ring" on the reader? --Svennik (talk) 16:45, 18 October 2023 (UTC)Reply

Uncertainty about whether I'm in an edit war

edit

I'm done with this page now, basically. I think any disputes are about whether my contributions follow Wikipedia conventions or not. I don't know whether I've violated 3RR. Doesn't look like it. --Svennik (talk) 16:55, 18 October 2023 (UTC)Reply