Talk:Fixed-point property

Latest comment: 13 years ago by Terminus0 in topic Necessary condition

What is meant by "universal" in the statement "A topological space has the fixed point property if and only if its identity map is universal."? Gandalf (talk) 17:08, 3 October 2008 (UTC)Reply

A map f: X -> Y is universal if for any map g: X -> Y there is a point x in X, such that f(x) = g(x). It's unclear whether it adds anything to the article since it's a tautology in this case. Terminus0 (talk) 02:10, 21 August 2011 (UTC)Reply

Are there any examples of two spaces with the fixed point property whose product does not? Gandalf (talk) 17:15, 3 October 2008 (UTC)Reply

Necessary condition

edit

"In 1932 Borsuk asked whether compactness together with contractibility could be a necessary and sufficient condition for the FPP to hold." What does necessary mean here? Clearly, there are non-contractible spaces with FPP, such as even real projective spaces. Terminus0 (talk) 02:10, 21 August 2011 (UTC)Reply