Talk:Hausdorff distance

Latest comment: 10 months ago by Bongobums in topic False claim under "Properties"

Is the figure wrong?

edit

The figure doesn't seem to fit the definition of Hausdorff distance.

To get sup_x inf_y d(x,y), you want to choose an x in X that is maximally distant from Y. That would not be a point right on the near boundary of X, but on the opposite side (which is not pictured in the figure.)

For example, take the left line segment in the figure, the one supposedly exhibiting sup_x inf_y d(x,y). Take the point in X at the end of it. Now move that point a ways up into the interior of X. Now you have an x in X with a larger value of inf_y d(x,y). —Preceding unsigned comment added by 128.226.120.167 (talk) 16:17, 30 October 2007 (UTC)Reply

If we suppose that X should be the complement of the green part (instead of X=the green part, as indicated in the picture), then perhaps this figure will work. --Kompik 19:28, 3 December 2007 (UTC)Reply
The figure is indeed entirely wrong and needs to be replaced as soon as possible as it is no doubt causing a lot of confusion.
Kompik suggests that assigning X as the complement of the green part would make it work, and this is true for X. However, this would only solve the problem for the directed Hausdorff distance from X to Y (in essence, we should demonstrate that the Hausdorff distance is in fact the maximum of both directed distances). Also, the local maximum to the right remains confusing and as would be that the figures would be touching. Instead, I suggest an illustration with points instead of blobs: illustrate that the maximum distance of all paths between each point in X to a nearest point in Y is the Hausdorff distance. In other words: each point in X is at most   from Y.
This page has an excellent demonstration that could perhaps be animated in a GIF file. — Stimpy talk 09:48, 3 January 2008 (UTC)Reply
That link seems to have stopped working (404 Not Found).  --Lambiam 19:51, 11 April 2008 (UTC)Reply
The answer is yes. I try a new version of this figure. Rocchini (talk) 12:53, 6 May 2008 (UTC)Reply
I think the figure is correct as long as we take X and Y as being the green and blue lines respectively. The confusion arises if we try to interpret X and Y as being the regions enclosed by these lines, in which case the Hausdorff distnace from each point of X to the set Y is 0, as X is contained in Y. And if we assume that Y is the region outside of the blue line then we don't even have a Hausdorff distance between X and Y because Y is no longer a compact set. I have added a caption to the image to try to clarify the correct interpretation. Gandalf61 (talk) 11:22, 19 May 2008 (UTC)Reply

Is distance in the remark wrong?

edit

The remark is not that important. If  , then it is true that  . It is just like expecting y to belong to B(x), the ball with radius 1 centered at x, just because d(x,y) = 1. André Caldas (talk) 20:03, 12 May 2015 (UTC)Reply

Perhaps I am misunderstanding something here, but shouldn't the distance between the two sets be 2 rather than 1? — Preceding unsigned comment added by Bowiki (talkcontribs) 15:44, 15 November 2012 (UTC)Reply

- No. 2 is the supremum of d(x,y), not the Hausdorff distance. André Caldas (talk) 20:03, 12 May 2015 (UTC)Reply

According to my understanding the distance between the sets is 1+ε, where ε<δ, ε>0 and δ>0 is an arbitrary small number. Thus, the example in the remark doesn't prove anything. --130.75.51.124 (talk) 13:25, 9 January 2013 (UTC)Reply

- No. There is no ε in the definition of X and Y. So, the distance cannot deppend on ε. André Caldas (talk) 20:03, 12 May 2015 (UTC)Reply

-Please can someone explain to me why 1∉ Y_1 ? I take the sequence y_n=-1/n∈Y and evaluate inf|1-y_n|=1 thus 1∈Y_1. Please correct me. — Preceding unsigned comment added by Stikawi (talkcontribs) 16:47, 13 November 2019 (UTC)Reply

The remark is wrong for the following reason: the distance map   is Lipschitz-continuous, hence the  -fattening   is closed as the continuous preimage of a closed set; next, it is easy to prove   for any  . Now set  , then the definition implies   for all  , and hence  ; symmetry yields  .

Also Stikawi is right: the correct 1-fattenings in the example are   and  . 129.22.1.29 (talk) 15:06, 6 October 2023 (UTC) M.L.JuhosReply

Re the motivation for the definition

edit

Getting a symmetric function is not the only point for going from d to d_H. d(X,Y)=0 iff X\subset Y as well, so that d_H(X,Y)=0 iff X=Y as required. Would someone make a nice edit? 89.180.15.198 (talk) 10:37, 7 July 2008 (UTC)Reply

  Done.  --Lambiam 02:10, 12 July 2008 (UTC)Reply

Hi there, I don't understand the notation '[1,3,6,7]' in this section. Shall I change it to {1,3,6,7}, and then also change all the other square brackets to curly brackets? Thanks! — Preceding unsigned comment added by The man who was Friday (talkcontribs) 14:39, 29 March 2012 (UTC)Reply

edit

Is it possible to have links to localized pages when appropriate? For instance, this article have corresponding Russian page Метрика Хаусдорфа and Italian page Distanza di Hausdorff. I am sure that lots of math articles have variants in other languages.

Arkadi kagan (talk) 07:28, 17 May 2009 (UTC)Reply

The link exists already. When you look the article page, it appears normally on the left, far down the Wikipedia image. You can also see it (and possibly modify) in the "source" of the article page, by clicking on "edit this page" and moving to the very bottom on the page contents. --Bdmy (talk) 07:44, 17 May 2009 (UTC)Reply

Definition of natural number

edit

It might be wise to state in the Remark on the Definition that this article adheres to the notation   as the set of strictly positive integers, in contrast to the positive integers which would result in a Hausdorff distance of  . Both definitions are found in literature, see [1], so it seems necessary to disambiguate. ikingut 15:30, 12 June 2014 (UTC) — Preceding unsigned comment added by Rphlypo (talkcontribs)

References

edit

Hello fellow Wikipedians,

I have just added archive links to one external link on Hausdorff distance. Please take a moment to review my edit. You may add {{cbignore}} after the link to keep me from modifying it, if I keep adding bad data, but formatting bugs should be reported instead. Alternatively, you can add {{nobots|deny=InternetArchiveBot}} to keep me off the page altogether, but should be used as a last resort. I made the following changes:

When you have finished reviewing my changes, please set the checked parameter below to true or failed to let others know (documentation at {{Sourcecheck}}).

This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}} (last update: 5 June 2024).

  • If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
  • If you found an error with any archives or the URLs themselves, you can fix them with this tool.

Cheers.—cyberbot IITalk to my owner:Online 19:19, 28 March 2016 (UTC)Reply

False claim under "Properties"

edit

"If X is a subset of Y then d(X,Z) >= d(Y,Z)" is just false for general Z. E.g., take Z=X; then this says d(X,X) >= d(Y,Z); the LHS is zero and this is true only when Y happens to be "the same as" X (more precisely: same closure). I'm not just removing this because (1) right now I'm away from my usual computer and am not logged in, and I don't want to make significant changes without accountability, and (2) maybe there's some not-wrong thing that this was intended to say. (I think _probably_ not.) So for now I'm just leaving this comment here and also on the talk page of the user who added that bit (https://en.wikipedia.org/w/index.php?title=User_talk%3ABongobums#Hausdorff_distance_property). Gareth McCaughan — Preceding unsigned comment added by 15.90.166.11 (talk) 13:06, 5 January 2024 (UTC) I've now removed that claim. Gareth McCaughan (talk) 02:30, 8 January 2024 (UTC)Reply

Yes, you are right. Thank you for pointing that out! Next time I will check my claims more thoroughly before I post them on the wiki. Bongobums (talk) Bongobums (talk) 08:33, 24 January 2024 (UTC)Reply