Talk:Singular measure

Latest comment: 18 years ago by Cj67 in topic a question

mutually singular

edit

so why not call this article "mutually singular measures" like the first line says? --itaj 04:01, 12 May 2006 (UTC)Reply

a question

edit

let   be a measurable space. i'm talking here about real-value signed finite measures on this space. let M be a set of measures.

let N be the set of all measures absolutely continuous with respect to a measure in the linear span of measures in M. i.e.  

for a measure   i'll denote  . the set of measures mutually singular to  .

and for a set of measures L.  . the set of all measures mutually singular to all measures in L.

my question is if the above implies that   i know this is true if there's only one measure in M, but i need to know about infinite set M, countable and bigger. --itaj 04:05, 12 May 2006 (UTC)Reply

If span is in the sense of vector spaces, then no. Consider  . Then   or N, but it is in singl(singl(N)). (Cj67 23:39, 25 June 2006 (UTC))Reply