The telluride bromides are chemical compounds that contain both telluride ions (Te2−) and bromide ions (Br−). They are in the class of mixed anion compounds or chalcogenide halides.[1]
In many tellurium bromide compounds, tellurium atoms link up in a helix, similar to pure tellurium structure. In Rhenium compounds tellurium atoms form a cluster with rhenium atoms. In some materials, tellurium forms a honeycomb like structure containing tubes filled with bromine and the other elements.
List
editname | formula | system | space group | unit cell Å | volume | density | properties | ref |
---|---|---|---|---|---|---|---|---|
Sb2Te2BrAlCl4 | monoclinic | C2/c | [1] | |||||
copper telluride bromide | CuBrTe | tetragonal | I41/amd | a = 16.417 c = 4.711 Z = 16 | 1269.7 | 5.67 | black | [2] |
MoTe4Br | silver | [3] | ||||||
Mo4Te7Br8 | black semiconductor | [3] | ||||||
MoTe6Br3 | silver | [3] | ||||||
[Mo3Se7(TeBr3)Br2]2[Te2Br10] | triclinic | P1 | a=10.1638 b=11.0241 c=12.5200 α =85.461 β =85.529 γ =76.410°; Z =1 | 1358.94 | 4.631 | [1][4] | ||
NbOTe7Br5 | [3] | |||||||
decasilver tetratelluride tribromide | Ag10Te4Br3 | hexagonal *2
orthorhombic*2 |
P6/mmm
P63/mmc Cmc21 |
Ag+ conductor | [5] | |||
Ag10Te4Br3 | orthorhombic | Cmcm | a=15.381 b=15.765 c=13.726 | 3328.2 | Ag ion conductor | [6] | ||
Ag23Te12Br | orthorhombic | Pnnm | honeycomb Te; Ag ion conductor | [1] | ||||
Ag19Te6Br7 | trigonal
monoclinic |
R3m | [1] | |||||
Ag19Te6Br5.4I1.6 | orthorhombic | Pnma | electric conductor | [1] | ||||
Ag19Te5SeBr7 | orthorhombic | Pbam | [1] | |||||
La3Te4Br | orthorhombic | Pnma | a = 16.343 b = 4.350 c = 14.266 Z = 4 | 1014.1 | [1][7] | |||
W2O2Te4Br5 | ||||||||
Re4Te8Br16 | I4 | a=11.202 c=13.935 | 1748.6 | [8] | ||||
[Re2Br4(Te2)(TeBr)2(TeBr2)2] |
[1] | |||||||
[Re6Te8(TeBr2)6]Br2 | [1] | |||||||
Pd4Br4Te3 | triclinic | P1 | a =8.425 b =8.450 c =8.648; α =82.55 β =73.36 γ =88.80°; Z =2 | semiconductor | [9] | |||
AuBrTe2 | orthorhombic | a=4.033 b=12.375 c=8.942 | 7.89 | silvery white, metallic melt 457 C | [2][10] | |||
Hg3Te2Br2 | yellow | [1][11] | ||||||
Hg3Te2BrI | monoclinic | C2 | 18.376 b=9.587 c=10.575 β=100.11° | [11][12] | ||||
Tl5Te2Br | [13] | |||||||
BiTeBr | trigonal | P3m1 | a = 4.2662 c = 6.487 | melt 526 | [14] | |||
Bi2Te2BrAlCl4 | monoclinic | C2/c | [1] |
References
edit- ^ a b c d e f g h i j k l Xiao, Jin-Rong; Yang, Si-Han; Feng, Fang; Xue, Huai-Guo; Guo, Sheng-Ping (September 2017). "A review of the structural chemistry and physical properties of metal chalcogenide halides". Coordination Chemistry Reviews. 347: 23–47. doi:10.1016/j.ccr.2017.06.010.
- ^ a b Carkner, Philip M.; Haendler, Helmut M. (June 1976). "The crystal structure of copper bromide telluride". Journal of Solid State Chemistry. 18 (2): 183–189. Bibcode:1976JSSCh..18..183C. doi:10.1016/0022-4596(76)90094-3.
- ^ a b c d Beck, Johannes (1994-02-01). "New Forms and Functions of Tellurium: From Polycations to Metal Halide Tellurides". Angewandte Chemie International Edition in English. 33 (2): 163–172. doi:10.1002/anie.199401631. ISSN 0570-0833.
- ^ Sokolov, Maxim N.; Gushchin, Artem L.; Abramov, Pavel A.; Virovets, Alexander V.; Peresypkina, Eugenia V.; Fedin, Vladimir P. (May 2007). "Synthesis and Structures of Mo 3 Se 7 Te 2 Br 10 , Mo 3 Se 7 TeI 6 , and Mo 6 Te 21 I 22 Containing TeX 3 - (X = Br, I) Ligands Coordinated to a Triangular Cluster Core †". Inorganic Chemistry. 46 (11): 4677–4682. doi:10.1021/ic0700553. ISSN 0020-1669. PMID 17465541.
- ^ Lange, Stefan; Nilges, Tom (May 2006). "Ag10Te4Br2: A New Silver(I) (poly)Chalcogenide Halide Solid Electrolyte". Chemistry of Materials. 18 (10): 2538–2544. doi:10.1021/cm060226m.
- ^ Giller, Malte; Bawohl, Melanie; Gerstle, Alexandra P.; Nilges, Tom (November 2013). "Copper Substitution and Mixed Cation Effect in Ag 10 Te 4 Br 3: Copper Substitution and Mixed Cation Effect in Ag 10 Te 4 Br 3". Zeitschrift für anorganische und allgemeine Chemie. 639 (14): 2379–2381. doi:10.1002/zaac.201300309.
- ^ Larres, Markus; Mudring, Anja-Verena; Meyer, Gerd (2011-03-21). "The First Lanthanide Telluride-Bromide: La3Te4Br, a Valence Compound". Crystals. 1 (1): 15–21. doi:10.3390/cryst1010015. ISSN 2073-4352.
- ^ Mironov, Yu. V.; Fedorov, V. E. (2002). "Tetranuclear rhenium chalcogenide cluster complexes with a cubane core. Synthesis, structures, and properties". Russian Chemical Bulletin. 51 (4): 569–580. doi:10.1023/A:1015843529164. S2CID 92252272.
- ^ Janetzky, Manuel; Rödel, Eva; Pietzonka, Clemens; Müller, Ulrich; Ressler, Thorsten; Harbrecht, Bernd (2007-09-18). "The Valence Problem of Pd4Br4Te3". Chemistry - A European Journal. 13 (35): 9882–9891. doi:10.1002/chem.200700658. hdl:11858/00-001M-0000-0010-FF49-A. PMID 17879245.
- ^ Rabenau, A.; Rau, H.; Rosenstein, G. (August 1970). "Telluride halides of gold". Journal of the Less Common Metals. 21 (4): 395–401. doi:10.1016/0022-5088(70)90043-3.
- ^ a b Kozin, L. F.; Hansen, Steve C. (2013-10-11). Mercury Handbook: Chemistry, Applications and Environmental Impact. Royal Society of Chemistry. p. 294. ISBN 978-1-84973-515-5.
- ^ Minets, Yu.V; Voroshilov, Yu.V; Pan’ko, V.V (March 2004). "The structures of mercury chalcogenhalogenides Hg3X2Hal2". Journal of Alloys and Compounds. 367 (1–2): 109–114. doi:10.1016/j.jallcom.2003.08.020.
- ^ Babanly, D. M.; Babanly, M. B. (October 2010). "Phase equilibria in the Tl-TlBr-Te system and thermodynamic properties of the compound Tl5Te2Br". Russian Journal of Inorganic Chemistry. 55 (10): 1620–1629. doi:10.1134/S0036023610100219. ISSN 0036-0236. S2CID 189795948.
- ^ Petasch, U.; Oppermann, H. (1999-04-01). "Untersuchungen zum quasibinären System Bi2Te3/BiBr3 / Investigations on the Pseudobinary System Bi2Te3/BiBr3". Zeitschrift für Naturforschung B. 54 (4): 487–490. doi:10.1515/znb-1999-0412. ISSN 1865-7117. S2CID 201643367.