Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure,[1] so identifying the specific parametrization used is crucial in any given text. | |||
Probability mass function The orange line represents the mean, which is equal to 10 in each of these plots; the green line shows the standard deviation. | |||
Notation | |||
---|---|---|---|
Parameters |
r > 0 — number of successes until the experiment is stopped (integer, but the definition can also be extended to reals) p ∈ [0,1] — success probability in each experiment (real) | ||
Support | k ∈ { 0, 1, 2, 3, … } — number of failures | ||
PMF | involving a binomial coefficient | ||
CDF | the regularized incomplete beta function | ||
Mean | |||
Mode | |||
Variance | |||
Skewness | |||
Excess kurtosis | |||
MGF | |||
CF | |||
PGF | |||
Fisher information | |||
Method of moments |
|
Template documentation
This template provides the infobox for the Negative binomial distribution article. It serves as a mean of protection against edits from anonymous IPs. Please go to the article's talk page before editing this template.
NOTE: This list only appears on this page, and will not be included in the template.
- ^ DeGroot, Morris H. (1986). Probability and Statistics (Second ed.). Addison-Wesley. pp. 258–259. ISBN 0-201-11366-X. LCCN 84006269. OCLC 10605205.