Thermodynamic integration

Thermodynamic integration is a method used to compare the difference in free energy between two given states (e.g., A and B) whose potential energies and have different dependences on the spatial coordinates. Because the free energy of a system is not simply a function of the phase space coordinates of the system, but is instead a function of the Boltzmann-weighted integral over phase space (i.e. partition function), the free energy difference between two states cannot be calculated directly from the potential energy of just two coordinate sets (for state A and B respectively). In thermodynamic integration, the free energy difference is calculated by defining a thermodynamic path between the states and integrating over ensemble-averaged enthalpy changes along the path. Such paths can either be real chemical processes or alchemical processes. An example alchemical process is the Kirkwood's coupling parameter method.[1]

Derivation

edit

Consider two systems, A and B, with potential energies   and  . The potential energy in either system can be calculated as an ensemble average over configurations sampled from a molecular dynamics or Monte Carlo simulation with proper Boltzmann weighting. Now consider a new potential energy function defined as:

 

Here,   is defined as a coupling parameter with a value between 0 and 1, and thus the potential energy as a function of   varies from the energy of system A for   and system B for  . In the canonical ensemble, the partition function of the system can be written as:

 

In this notation,   is the potential energy of state   in the ensemble with potential energy function   as defined above. The free energy of this system is defined as:

 ,

If we take the derivative of F with respect to λ, we will get that it equals the ensemble average of the derivative of potential energy with respect to λ.

 

The change in free energy between states A and B can thus be computed from the integral of the ensemble averaged derivatives of potential energy over the coupling parameter  .[2] In practice, this is performed by defining a potential energy function  , sampling the ensemble of equilibrium configurations at a series of   values, calculating the ensemble-averaged derivative of   with respect to   at each   value, and finally computing the integral over the ensemble-averaged derivatives.

Umbrella sampling is a related free energy method. It adds a bias to the potential energy. In the limit of an infinite strong bias it is equivalent to thermodynamic integration.[3]

See also

edit

References

edit
  1. ^ Kirkwood, John G. (1935). "Statistical Mechanics of Fluid Mixtures". The Journal of Chemical Physics. 3 (5): 300–313. Bibcode:1935JChPh...3..300K. doi:10.1063/1.1749657.
  2. ^ Frenkel, Daan and Smit, Berend. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, 2007
  3. ^ J Kästner; et al. (2006). "QM/MM Free-Energy Perturbation Compared to Thermodynamic Integration and Umbrella Sampling: Application to an Enzymatic Reaction". Journal of Chemical Theory and Computation. 2 (2): 452–461. doi:10.1021/ct050252w. PMID 26626532.