A time dependent vector field on a manifold M is a map from an open subset
Ω
⊂
R
×
M
{\displaystyle \Omega \subset \mathbb {R} \times M}
on
T
M
{\displaystyle TM}
X
:
Ω
⊂
R
×
M
⟶
T
M
(
t
,
x
)
⟼
X
(
t
,
x
)
=
X
t
(
x
)
∈
T
x
M
{\displaystyle {\begin{aligned}X:\Omega \subset \mathbb {R} \times M&\longrightarrow TM\\(t,x)&\longmapsto X(t,x)=X_{t}(x)\in T_{x}M\end{aligned}}}
such that for every
(
t
,
x
)
∈
Ω
{\displaystyle (t,x)\in \Omega }
,
X
t
(
x
)
{\displaystyle X_{t}(x)}
is an element of
T
x
M
{\displaystyle T_{x}M}
.
For every
t
∈
R
{\displaystyle t\in \mathbb {R} }
such that the set
Ω
t
=
{
x
∈
M
∣
(
t
,
x
)
∈
Ω
}
⊂
M
{\displaystyle \Omega _{t}=\{x\in M\mid (t,x)\in \Omega \}\subset M}
is nonempty ,
X
t
{\displaystyle X_{t}}
is a vector field in the usual sense defined on the open set
Ω
t
⊂
M
{\displaystyle \Omega _{t}\subset M}
.
Associated differential equation
edit
Given a time dependent vector field X on a manifold M , we can associate to it the following differential equation :
d
x
d
t
=
X
(
t
,
x
)
{\displaystyle {\frac {dx}{dt}}=X(t,x)}
which is called nonautonomous by definition.
Equivalence with time-independent vector fields
edit
A time dependent vector field
X
{\displaystyle X}
on
M
{\displaystyle M}
can be thought of as a vector field
X
~
{\displaystyle {\tilde {X}}}
on
R
×
M
,
{\displaystyle \mathbb {R} \times M,}
where
X
~
(
t
,
p
)
∈
T
(
t
,
p
)
(
R
×
M
)
{\displaystyle {\tilde {X}}(t,p)\in T_{(t,p)}(\mathbb {R} \times M)}
does not depend on
t
.
{\displaystyle t.}
Conversely, associated with a time-dependent vector field
X
{\displaystyle X}
on
M
{\displaystyle M}
is a time-independent one
X
~
{\displaystyle {\tilde {X}}}
R
×
M
∋
(
t
,
p
)
↦
∂
∂
t
|
t
+
X
(
p
)
∈
T
(
t
,
p
)
(
R
×
M
)
{\displaystyle \mathbb {R} \times M\ni (t,p)\mapsto {\dfrac {\partial }{\partial t}}{\Biggl |}_{t}+X(p)\in T_{(t,p)}(\mathbb {R} \times M)}
on
R
×
M
.
{\displaystyle \mathbb {R} \times M.}
In coordinates,
X
~
(
t
,
x
)
=
(
1
,
X
(
t
,
x
)
)
.
{\displaystyle {\tilde {X}}(t,x)=(1,X(t,x)).}
The system of autonomous differential equations for
X
~
{\displaystyle {\tilde {X}}}
is equivalent to that of non-autonomous ones for
X
,
{\displaystyle X,}
and
x
t
↔
(
t
,
x
t
)
{\displaystyle x_{t}\leftrightarrow (t,x_{t})}
is a bijection between the sets of integral curves of
X
{\displaystyle X}
and
X
~
,
{\displaystyle {\tilde {X}},}
respectively.
The flow of a time dependent vector field X , is the unique differentiable map
F
:
D
(
X
)
⊂
R
×
Ω
⟶
M
{\displaystyle F:D(X)\subset \mathbb {R} \times \Omega \longrightarrow M}
such that for every
(
t
0
,
x
)
∈
Ω
{\displaystyle (t_{0},x)\in \Omega }
,
t
⟶
F
(
t
,
t
0
,
x
)
{\displaystyle t\longrightarrow F(t,t_{0},x)}
is the integral curve
α
{\displaystyle \alpha }
of X that satisfies
α
(
t
0
)
=
x
{\displaystyle \alpha (t_{0})=x}
.
We define
F
t
,
s
{\displaystyle F_{t,s}}
as
F
t
,
s
(
p
)
=
F
(
t
,
s
,
p
)
{\displaystyle F_{t,s}(p)=F(t,s,p)}
If
(
t
1
,
t
0
,
p
)
∈
D
(
X
)
{\displaystyle (t_{1},t_{0},p)\in D(X)}
and
(
t
2
,
t
1
,
F
t
1
,
t
0
(
p
)
)
∈
D
(
X
)
{\displaystyle (t_{2},t_{1},F_{t_{1},t_{0}}(p))\in D(X)}
then
F
t
2
,
t
1
∘
F
t
1
,
t
0
(
p
)
=
F
t
2
,
t
0
(
p
)
{\displaystyle F_{t_{2},t_{1}}\circ F_{t_{1},t_{0}}(p)=F_{t_{2},t_{0}}(p)}
∀
t
,
s
{\displaystyle \forall t,s}
,
F
t
,
s
{\displaystyle F_{t,s}}
is a diffeomorphism with inverse
F
s
,
t
{\displaystyle F_{s,t}}
.
Let X and Y be smooth time dependent vector fields and
F
{\displaystyle F}
the flow of X . The following identity can be proved:
d
d
t
|
t
=
t
1
(
F
t
,
t
0
∗
Y
t
)
p
=
(
F
t
1
,
t
0
∗
(
[
X
t
1
,
Y
t
1
]
+
d
d
t
|
t
=
t
1
Y
t
)
)
p
{\displaystyle {\frac {d}{dt}}\left.{\!\!{\frac {}{}}}\right|_{t=t_{1}}(F_{t,t_{0}}^{*}Y_{t})_{p}=\left(F_{t_{1},t_{0}}^{*}\left([X_{t_{1}},Y_{t_{1}}]+{\frac {d}{dt}}\left.{\!\!{\frac {}{}}}\right|_{t=t_{1}}Y_{t}\right)\right)_{p}}
Also, we can define time dependent tensor fields in an analogous way, and prove this similar identity, assuming that
η
{\displaystyle \eta }
is a smooth time dependent tensor field:
d
d
t
|
t
=
t
1
(
F
t
,
t
0
∗
η
t
)
p
=
(
F
t
1
,
t
0
∗
(
L
X
t
1
η
t
1
+
d
d
t
|
t
=
t
1
η
t
)
)
p
{\displaystyle {\frac {d}{dt}}\left.{\!\!{\frac {}{}}}\right|_{t=t_{1}}(F_{t,t_{0}}^{*}\eta _{t})_{p}=\left(F_{t_{1},t_{0}}^{*}\left({\mathcal {L}}_{X_{t_{1}}}\eta _{t_{1}}+{\frac {d}{dt}}\left.{\!\!{\frac {}{}}}\right|_{t=t_{1}}\eta _{t}\right)\right)_{p}}
This last identity is useful to prove the Darboux theorem .
Lee, John M., Introduction to Smooth Manifolds , Springer-Verlag, New York (2003) ISBN 0-387-95495-3 . Graduate-level textbook on smooth manifolds.