Using the definition of ordinal numbers suggested by John von Neumann , ordinal numbers are defined as hereditarily transitive sets: an ordinal number is a transitive set whose members are also transitive (and thus ordinals). The class of all ordinals is a transitive class.
Any of the stages
V
α
{\displaystyle V_{\alpha }}
and
L
α
{\displaystyle L_{\alpha }}
leading to the construction of the von Neumann universe
V
{\displaystyle V}
and Gödel's constructible universe
L
{\displaystyle L}
are transitive sets. The universes
V
{\displaystyle V}
and
L
{\displaystyle L}
themselves are transitive classes.
This is a complete list of all finite transitive sets with up to 20 brackets:[ 1]
{
}
,
{\displaystyle \{\},}
{
{
}
}
,
{\displaystyle \{\{\}\},}
{
{
}
,
{
{
}
}
}
,
{\displaystyle \{\{\},\{\{\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
}
,
{
{
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\},\{\{\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
}
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\}\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
,
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\},\{\{\}\}\}\},\{\{\},\{\{\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\}\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
}
,
{
{
}
,
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\},\{\{\}\}\},\{\{\},\{\{\},\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
{
}
}
,
{
{
}
,
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\},\{\{\}\}\},\{\{\{\}\},\{\{\},\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\},\{\{\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
}
,
{
{
}
}
,
{
{
}
,
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\},\{\{\}\}\},\{\{\},\{\{\}\},\{\{\},\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
{
{
{
}
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\{\{\{\}\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
}
,
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\},\{\{\}\}\}\},\{\{\},\{\{\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\}\}\},\{\{\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
}
,
{
{
{
{
}
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\},\{\{\{\{\}\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
{
}
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\{\}\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
}
,
{
{
}
,
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\}\}\},\{\{\},\{\{\},\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
{
}
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\}\}\},\{\{\{\}\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
{
}
}
,
{
{
{
{
}
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\{\}\},\{\{\{\{\}\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\},\{\{\}\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
}
,
{
{
{
}
}
}
}
}
,
{
{
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\},\{\{\{\}\}\}\}\},\{\{\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
{
}
}
,
{
{
}
,
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\}\}\},\{\{\{\}\},\{\{\},\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\}\}\},\{\{\},\{\{\}\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
{
}
}
}
}
,
{
{
{
}
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\{\}\}\}\},\{\{\{\}\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\{\{\}\}\},\{\{\{\{\}\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
,
{
{
{
{
}
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\},\{\{\}\},\{\{\{\{\}\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\}\}\},\{\{\{\{\}\}\},\{\{\},\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
}
,
{
{
}
}
,
{
{
}
,
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\}\}\},\{\{\},\{\{\}\},\{\{\},\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
{
}
}
}
}
,
{
{
}
,
{
{
}
,
{
{
{
}
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\{\}\}\}\},\{\{\},\{\{\},\{\{\{\}\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\{\}\}\}\},\{\{\},\{\{\}\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
{
}
,
{
{
}
}
}
}
}
,
{
{
{
}
,
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\{\},\{\{\}\}\}\}\},\{\{\{\},\{\{\}\}\}\},\{\{\},\{\{\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
,
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
}
,
{
{
}
,
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\},\{\{\}\}\}\},\{\{\},\{\{\}\}\},\{\{\},\{\{\},\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\},\{\{\{\}\}\},\{\{\{\{\}\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
,
{
{
{
}
}
}
}
}
,
{
{
{
}
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\},\{\{\{\}\}\}\}\},\{\{\{\}\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\}\}\},\{\{\},\{\{\{\}\}\},\{\{\},\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
}
,
{
{
{
}
}
}
}
,
{
{
{
}
}
,
{
{
}
,
{
{
{
}
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\},\{\{\{\}\}\}\},\{\{\{\}\},\{\{\},\{\{\{\}\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
}
}
,
{
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\}\},\{\{\{\}\}\}\},\{\{\},\{\{\}\},\{\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
,
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
}
,
{
{
{
}
,
{
{
}
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\},\{\{\}\}\}\},\{\{\},\{\{\}\}\},\{\{\},\{\{\{\},\{\{\}\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
,
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
{
}
}
,
{
{
}
,
{
{
}
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\},\{\{\}\}\}\},\{\{\},\{\{\}\}\},\{\{\{\}\},\{\{\},\{\{\}\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
{
{
{
}
}
}
}
}
,
{
{
}
,
{
{
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\{\{\{\}\}\}\}\},\{\{\},\{\{\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
{
}
,
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
}
}
,
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\{\},\{\{\}\}\}\},\{\{\},\{\{\}\}\}\},}
{
{
}
,
{
{
}
}
,
{
{
{
}
}
}
,
{
{
{
{
}
}
}
}
,
{
{
}
,
{
{
}
}
}
,
{
{
}
,
{
{
{
}
}
}
}
}
.
{\displaystyle \{\{\},\{\{\}\},\{\{\{\}\}\},\{\{\{\{\}\}\}\},\{\{\},\{\{\}\}\},\{\{\},\{\{\{\}\}\}\}\}.}
A set
X
{\displaystyle X}
is transitive if and only if
⋃
X
⊆
X
{\textstyle \bigcup X\subseteq X}
, where
⋃
X
{\textstyle \bigcup X}
is the union of all elements of
X
{\displaystyle X}
that are sets,
⋃
X
=
{
y
∣
∃
x
∈
X
:
y
∈
x
}
{\textstyle \bigcup X=\{y\mid \exists x\in X:y\in x\}}
.
If
X
{\displaystyle X}
is transitive, then
⋃
X
{\textstyle \bigcup X}
is transitive.
If
X
{\displaystyle X}
and
Y
{\displaystyle Y}
are transitive, then
X
∪
Y
{\displaystyle X\cup Y}
and
X
∪
Y
∪
{
X
,
Y
}
{\displaystyle X\cup Y\cup \{X,Y\}}
are transitive. In general, if
Z
{\displaystyle Z}
is a class all of whose elements are transitive sets, then
⋃
Z
{\textstyle \bigcup Z}
and
Z
∪
⋃
Z
{\textstyle Z\cup \bigcup Z}
are transitive. (The first sentence in this paragraph is the case of
Z
=
{
X
,
Y
}
{\displaystyle Z=\{X,Y\}}
.)
A set
X
{\displaystyle X}
that does not contain urelements is transitive if and only if it is a subset of its own power set ,
X
⊆
P
(
X
)
.
{\textstyle X\subseteq {\mathcal {P}}(X).}
The power set of a transitive set without urelements is transitive.
The transitive closure of a set
X
{\displaystyle X}
is the smallest (with respect to inclusion) transitive set that includes
X
{\displaystyle X}
(i.e.
X
⊆
TC
(
X
)
{\textstyle X\subseteq \operatorname {TC} (X)}
).[ 2] Suppose one is given a set
X
{\displaystyle X}
, then the transitive closure of
X
{\displaystyle X}
is
TC
(
X
)
=
⋃
{
X
,
⋃
X
,
⋃
⋃
X
,
⋃
⋃
⋃
X
,
⋃
⋃
⋃
⋃
X
,
…
}
.
{\displaystyle \operatorname {TC} (X)=\bigcup \left\{X,\;\bigcup X,\;\bigcup \bigcup X,\;\bigcup \bigcup \bigcup X,\;\bigcup \bigcup \bigcup \bigcup X,\ldots \right\}.}
Proof. Denote
X
0
=
X
{\textstyle X_{0}=X}
and
X
n
+
1
=
⋃
X
n
{\textstyle X_{n+1}=\bigcup X_{n}}
. Then we claim that the set
T
=
TC
(
X
)
=
⋃
n
=
0
∞
X
n
{\displaystyle T=\operatorname {TC} (X)=\bigcup _{n=0}^{\infty }X_{n}}
is transitive, and whenever
T
1
{\textstyle T_{1}}
is a transitive set including
X
{\textstyle X}
then
T
⊆
T
1
{\textstyle T\subseteq T_{1}}
.
Assume
y
∈
x
∈
T
{\textstyle y\in x\in T}
. Then
x
∈
X
n
{\textstyle x\in X_{n}}
for some
n
{\textstyle n}
and so
y
∈
⋃
X
n
=
X
n
+
1
{\textstyle y\in \bigcup X_{n}=X_{n+1}}
. Since
X
n
+
1
⊆
T
{\textstyle X_{n+1}\subseteq T}
,
y
∈
T
{\textstyle y\in T}
. Thus
T
{\textstyle T}
is transitive.
Now let
T
1
{\textstyle T_{1}}
be as above. We prove by induction that
X
n
⊆
T
1
{\textstyle X_{n}\subseteq T_{1}}
for all
n
{\displaystyle n}
, thus proving that
T
⊆
T
1
{\textstyle T\subseteq T_{1}}
: The base case holds since
X
0
=
X
⊆
T
1
{\textstyle X_{0}=X\subseteq T_{1}}
. Now assume
X
n
⊆
T
1
{\textstyle X_{n}\subseteq T_{1}}
. Then
X
n
+
1
=
⋃
X
n
⊆
⋃
T
1
{\textstyle X_{n+1}=\bigcup X_{n}\subseteq \bigcup T_{1}}
. But
T
1
{\textstyle T_{1}}
is transitive so
⋃
T
1
⊆
T
1
{\textstyle \bigcup T_{1}\subseteq T_{1}}
, hence
X
n
+
1
⊆
T
1
{\textstyle X_{n+1}\subseteq T_{1}}
. This completes the proof.
Note that this is the set of all of the objects related to
X
{\displaystyle X}
by the transitive closure of the membership relation, since the union of a set can be expressed in terms of the relative product of the membership relation with itself.
The transitive closure of a set can be expressed by a first-order formula:
x
{\displaystyle x}
is a transitive closure of
y
{\displaystyle y}
iff
x
{\displaystyle x}
is an intersection of all transitive supersets of
y
{\displaystyle y}
(that is, every transitive superset of
y
{\displaystyle y}
contains
x
{\displaystyle x}
as a subset).
Transitive models of set theory
edit
^ "Number of rooted identity trees with n nodes (rooted trees whose automorphism group is the identity group)." , OEIS
^ Ciesielski, Krzysztof (1997), Set theory for the working mathematician , Cambridge: Cambridge University Press, p. 164, ISBN 978-1-139-17313-1 , OCLC 817922080
^ Viale, Matteo (November 2003), "The cumulative hierarchy and the constructible universe of ZFA", Mathematical Logic Quarterly , 50 (1), Wiley: 99–103, doi :10.1002/malq.200310080
^ Goldblatt (1998) p.161
Ciesielski, Krzysztof (1997), Set theory for the working mathematician , London Mathematical Society Student Texts, vol. 39, Cambridge: Cambridge University Press , ISBN 0-521-59441-3 , Zbl 0938.03067
Goldblatt, Robert (1998), Lectures on the hyperreals. An introduction to nonstandard analysis , Graduate Texts in Mathematics , vol. 188, New York, NY: Springer-Verlag , ISBN 0-387-98464-X , Zbl 0911.03032
Jech, Thomas (2008) [originally published in 1973], The Axiom of Choice , Dover Publications , ISBN 978-0-486-46624-8 , Zbl 0259.02051