Tricine is an organic compound that is used in buffer solutions. The name tricine comes from tris and glycine, from which it was derived.[1] It is a white crystalline powder that is moderately soluble in water. It is a zwitterionic amino acid that has a pKa1 value of 2.3 at 25 °C, while its pKa2 at 20 °C is 8.15. Its useful buffering range of pH is 7.4-8.8. Along with bicine, it is one of Good's buffering agents. Good first prepared tricine to buffer chloroplast reactions.

Tricine
Skeletal formula of tricine
Names
IUPAC name
N-[1,3-Dihydroxy-2-(hydroxymethyl)propan-2-yl]glycine
Systematic IUPAC name
{[1,3-Dihydroxy-2-(hydroxymethyl)propan-2-yl]amino}acetic acid
Other names
Tricine
N-(Tri(hydroxymethyl)methyl)glycine
Identifiers
3D model (JSmol)
1937804
ChEBI
ChemSpider
ECHA InfoCard 100.024.721 Edit this at Wikidata
EC Number
  • 227-193-6
3688
MeSH tricine
UNII
  • InChI=1S/C6H13NO5/c8-2-6(3-9,4-10)7-1-5(11)12/h7-10H,1-4H2,(H,11,12) checkY
    Key: SEQKRHFRPICQDD-UHFFFAOYSA-N checkY
  • O=C(O)CNC(CO)(CO)CO
Properties
C6H13NO5
Molar mass 179.172 g·mol−1
Appearance White crystals
89.6 g L−1 (at 20 °C)
UV-vismax) 260 nm
Absorbance 0.03
Related compounds
Related compounds
Milacemide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Applications

edit

Tricine is a commonly used electrophoresis buffer and is also used in resuspension of cell pellets. It has a higher negative (more negative) charge than glycine allowing it to migrate faster. In addition its high ionic strength causes more ion movement and less protein movement. This allows for low molecular weight proteins to be separated in lower percent acrylamide gels. Tricine has been documented in the separation of proteins in the range of 1 to 100 kDa by electrophoresis.[2] The tricine buffer at 25 mmol/L was found to be the most effective buffer among the ten tested for ATP assays using firefly luciferase.[3] Tricine has also been found to be an effective scavenger of hydroxyl radicals in a study of radiation-induced membrane damage.[4]

See also

edit

References

edit
  1. ^ Good, N.E., et al., Biochemistry, v. 5, 467 (1966).
  2. ^ Schaegger, H., and von Jagow, G., "Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa." "Anal. Biochem." 166(2), 368-379.
  3. ^ Webster, J. J., and Leach, F. R., "Optimization of the firefly luciferase assay for ATP." "J. Appl. Biochem.", 2:469-479.
  4. ^ Hicks, M., and Gebicki, J. M., "Rate constants for reaction of hydroxyl radicals with Tris, Tricine, and Hepes buffers." "FEBS Lett.", 199(1):92-94.