Trimolybdenum phosphide

Trimolybdenum phosphide is a binary inorganic compound of molybdenum metal and phosphorus with the chemical formula Mo3P.[1][2]

Trimolybdenum phosphide
Identifiers
Properties
Mo3P
Molar mass 318.82 g·mol−1
Appearance grey crystals
insoluble
Related compounds
Related compounds
Molybdenum monophosphide, Molybdenum diphosphide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Preparation

edit

Trimolybdenum phosphide can be obtained via electrolysis of a melt mixture of molybdenum hexametaphosphate with molybdenum(VI) oxide and sodium chloride.

Properties

edit

Trimolybdenum phosphide forms grey crystals of tetragonal crystal system with space group I4.[3] It is insoluble in water. Trimolybdenum phosphide becomes superconducting at 7 K.[4]

Uses

edit

Trimolybdenum phosphide can be used as a catalyst for electrocatalytic processes.[5][6] It can also be used in accumulators.[7][8]

References

edit
  1. ^ Kondori, Alireza; Esmaeilirad, Mohammadreza; Baskin, Artem; Song, Boao; Wei, Jialiang; Chen, Wei; Segre, Carlo U.; Shahbazian-Yassar, Reza; Prendergast, David; Asadi, Mohammad (June 2019). "Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo 3 P) for Electrochemical Hydrogen Evolution". Advanced Energy Materials. 9 (22). Bibcode:2019AdEnM...900516K. doi:10.1002/aenm.201900516. ISSN 1614-6832. OSTI 1531000. S2CID 242323789. Retrieved 9 March 2024.
  2. ^ Muchharla, Baleeswaraiah; Malali, Praveen; Daniel, Brenna; Kondori, Alireza; Asadi, Mohammad; Cao, Wei; Elsayed-Ali, Hani E.; Castro, Mickaël; Elahi, Mehran; Adedeji, Adetayo; Sadasivuni, Kishor Kumar; Maurya, Muni Raj; Kumar, Kapil; Karoui, Abdennaceur; Kumar, Bijandra (13 September 2021). "Tri-molybdenum phosphide (Mo3P) and multi-walled carbon nanotube junctions for volatile organic compounds (VOCs) detection". Applied Physics Letters. 119 (11). doi:10.1063/5.0059378. S2CID 240537366.
  3. ^ Donnay, Joseph Désiré Hubert (1973). Crystal Data: Inorganic compounds. National Bureau of Standards. p. 16. Retrieved 9 March 2024.
  4. ^ Mellor, Joseph William (1971). Supplement to Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry: suppl. 1, pt. 1. N. Longmans, Green and Company. p. 337. Retrieved 9 March 2024.
  5. ^ Kondori, Alireza; Esmaeilirad, Mohammadreza; Baskin, Artem; Song, Boao; Wei, Jialiang; Chen, Wei; Segre, Carlo U.; Shahbazian-Yassar, Reza; Prendergast, David; Asadi, Mohammad (June 2019). "Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo 3 P) for Electrochemical Hydrogen Evolution". Advanced Energy Materials. 9 (22). Bibcode:2019AdEnM...900516K. doi:10.1002/aenm.201900516. OSTI 1531000. S2CID 242323789. Retrieved 9 March 2024.
  6. ^ Kuei, Brooke (August 27, 2019). "Uncovering the Origin of High Performance in a New Water Splitting Catalyst". foundry.lbl.gov. Retrieved 9 March 2024.
  7. ^ Timmer, John (6 February 2023). "New battery seems to offer it all: Lithium-metal/lithium-air electrodes". Ars Technica. Retrieved 9 March 2024.
  8. ^ "(201d) First-Principles Study of Lithium-Air Batteries Based on Tri-Molybdenum Phosphide (Mo3P) Nanoparticles | AIChE". aiche.org. Retrieved 9 March 2024.